
Haskell eXchange 2015

Programming from
Universal Properties

Gershom Bazerman,  
S&P/CapitalIQ

Warning: This Talk Contains Lies

What is a Universal Property

❖ Take some notion of a “mathematical object” and define
some notion of something (or things) one can do with it.
That’s a property!

❖ Why is “color” a property of a wheelbarrow? Because
there is a function Wheelbarrow -> Color.

What is a Universal Property Categorically

What is a Universal Property

❖ A universal property of an object is still something you
can do with it, but it something you can do with it that
encompasses everything you can do with it.

❖ The universal property of Bool is `a -> a -> a`.

❖ We capture the “essence” of Bool without direct
reference to Bool.

What is a Universal Property Categorically
(Ok, only a special case)

1) A Diagram

2) A Co-Cone

3) A Universal Co-Cone; i.e. A Colimit

Varieties of Colimits
❖ N discrete objects — N-ary Coproduct (Either).

❖ 0 discrete objects — Initial Object (Void).

newtype Void = Void Void

absurd :: Void -> a
absurd (Void a) = absurd a

Varieties of Colimits
❖ Two objects, parallel morphisms — Coequalizer

(Must factor through the
parallel morphisms)

Varieties of Colimits
❖ Two objects, parallel morphisms — Coequalizer

Some Coequalizers

❖ Objects are Sets, Morphisms are Set-theoretic functions  
Coequalizers are quotients — i.e. f, g : A -> B then
Coeq(f,g) ~= 
[f(x) | x <- a, f(x)=g(x)] +  
[(f(x),g(x)) | x <- a, f(x) /= g(x)] (sort of)

Some Coequalizers
❖ Take Matr_Int — objects, given by N, are sets of all NxN

matrices, morphisms are NxM matrices that act by
multiplication and we have a zero object.  
 
Coeq(M,0) is the cokernel — aka the left null space.  
 
I.e. x such that x*M = 0.

❖ http://blog.functorial.com/posts/2012-02-19-What-If-
Haskell-Had-Equalizers.html

http://blog.functorial.com/posts/2012-02-19-What-If-Haskell-Had-Equalizers.html

Some Coequalizers
❖ Topologically

Parallel arrows on the same object
❖ Object with a loop and a constant arrow. (Result of Freyd)

Nat!

Varieties of Colimits
❖ Three objects in a span — Pushout

Cocompleteness

❖ Coproducts & Equalizers —> Pushouts

❖ Pushouts & Initial Object —> Coproducts & Equalizers

❖ either of these —> “All Finite Colimits”; i.e. co-complete

Categories to Haskell

data ConeOverTwo a b t = CoT (a -> t) (b -> t)

data Colim f = Colim (forall t. f t -> t)

-- Colim (ConeOverTwo a b) === Either

data ConeOverZero t = CoZ

-- Colim ConeOverZero === Void

Universal Properties from Universal Quantification!

data ConeOverTwo a b t = CoT (a -> t) (b -> t)

data Colim f = Colim (forall t. f t -> t)

{-
either :: Either a b ->
 (a -> c) -> (b -> c) -> c

either2 :: Colim (ConeOverTwo a b) ->
 (a -> c) -> (b -> c) -> c
either2 (Colim h) f g = h (CoT f g)

Exercise — work the isomorphism through by hand.
-}

Why does this work!?
Types of \x -> x

Int -> Int

String -> String

Double -> Double

Num a => a -> a

() -> ()

Even -> Even

forall a. a -> a

Universally Quantified
Types are Initial Types

Categories In Haskell

Nat
data ConeOverLoop t = CoL (t -> t) t

type Nat = Colim ConeOverLoop

fromN :: Nat -> Int
fromN (Colim f) = f (CoL succ 0)

toN :: Int -> Nat
toN n = Colim (\(CoL s z) -> last $ take (n+1) $ iterate s z)

Colimits ~= Initial Algebras ~= Church Encodings

Data ~= Functions

Whoa

List a

data IndexedConeOverLoop a t = ICoL (a -> t -> t) t

type List a = Colim (IndexedConeOverLoop a)

fromList :: List a -> [a]
fromList (Colim f) = f (ICoL (:) [])

toList :: [a] -> List a
toList xs = Colim (\(ICoL c z) -> foldr c z xs)

In Fact…

Void F Void F (F Void)

In Fact…

Void F Void F (F Void)

Fix F

Adamek’s Theorem:

Under certain conditions
(F is co-continuous, etc) then:

The colimit of the chain
induced by iteration of F  
is the initial F algebra.

Thinking with Universal Properties
❖ Date recurrence rules (calendar appointments, meeting

schedules, scheduled batch procedures and reports,
scheduled bond payments)

❖ data Sched = Daily | Weekly [1-7] | MonthlyAbsolute [1-31] |
MonthlyRelative [1-7] [1-4] | JointSchedule Sched Sched | …

❖ interpSched :: Sched -> Day -> Day

❖ interpSched :: Sched -> Day -> Nat

❖ type GenSched = (Day -> Nat)  

❖ data GenSched = GenSched (Day -> Maybe (Nat, GenSched))  

Thinking with Universal Properties

❖ data GenSched = GenSched (Day -> Maybe (Nat, GenSched)) 

❖ data GenSched a = GenSched (a -> Maybe (Nat, GenSched a)) 

❖ … by universal nonsense …

❖ type GenSched a = a -> [Nat]

❖ A universal schedule representation.

Clojure’s Transducers

❖ type Reducer a = forall z. (a -> z -> z)  

❖ type Transducer a b = forall z. (a -> z -> z) -> (b -> z -> z)

❖ … By abstract nonsense  

❖ Transducer a b === b -> [a]

❖ (https://oleksandrmanzyuk.wordpress.com/2014/08/09/transducers-are-monoid-
homomorphisms/  
 
http://tel.github.io/posts/typing-transducers/)

https://oleksandrmanzyuk.wordpress.com/2014/08/09/transducers-are-monoid-homomorphisms/
http://tel.github.io/posts/typing-transducers/

Just One More Thing…

❖ Take some category C, now look at “things ‘containing’
C but that have all colimits.” Now take the initial such
thing… what is it?

The Yoneda Embedding

Extreme 
Haskell

Take it to the (co-)Limit!

