Haskell eXchange 2015

Programming from
Universal Properties

Gershom Bazerman,
S&P / CapitallQ



Warning: This Talk Contains Lies

Fast and Loose Reasoning is Morally Correct ~

Nils Anders Danielsson  John Hughes Jeremy Gibbons
Patrik Jansson Oxford University Computing Laboratory
Chalmers University of Technology Jeremy.Gibbons@comlab.ox.ac.uk

{nad,rjmh,patrikj}@cs.chalmers.se



What 1s a Yarversal Property

+ Take some notion of a “mathematical object” and define
some notion of something (or things) one can do with it.
That’s a property!

* Why is “color” a property of a wheelbarrow? Because
there is a function Wheelbarrow -> Color.



What is a Uarversal Property Categorically




What s a Umiversal Property

* A universal property of an object is still something you
can do with it, but it something you can do with it that
encompasses everything you can do with it.

* The universal property of Bool is 'a->a->a".

* We capture the “essence” of Bool without direct
reference to Bool.



What is a Universal Property Categorically

(Ok, only a special case)







2) A Co-Cone




3) A Universal Co-Cone;1.e. A Colimit




Varieties of Colimits

* N discrete objects — N-ary Coproduct (Either).

+ () discrete objects — Initial Object (Void).

newtype Void = Void Void ‘

albsidis i ordeE—a
absurd (Void a) = absurd a 474




Varieties of Colimits

* Two objects, parallel morphisms — Coequalizer

3 ;. I
P2

4

(Must factor through the ."~.,.
parallel morphisms)



Varieties of Colimits

* Two objects, parallel morphisms — Coequalizer




Some Coequalizers

* Objects are Sets, Morphisms are Set-theoretic functions
Coequalizers are quotients —i.e. f, g : A -> B then
Coeq(f,g) ~=

PR e =g ied)=i0el]

(f(x),g(x)) | x <-a, f(x) /= g(x)] (sort of)




Some Coequalizers

« Take Matr_Int — objects, given by N, are sets of all NxN
matrices, morphisms are NxM matrices that act by
multiplication and we have a zero object.

Coeq(M,0) is the cokernel — aka the left null space.

I.e. x such that x*M = 0.

* http:/ /blog.functorial.com / posts /2012-02-19-What-If-
Haskell-Had-Equalizers.html



http://blog.functorial.com/posts/2012-02-19-What-If-Haskell-Had-Equalizers.html

Some Coequalizers

“ Topologically

0::|—>O



Parallel arrows on the same object

* Object with a loop and a constant arrow. (Result of Freyd)

=7




Varieties of Colimits

* Three objects in a span — Pushout




Cocompleteness

« Coproducts & Equalizers —> Pushouts
* Pushouts & Initial Object —> Coproducts & Equalizers

« either of these —> “All Finite Colimits”; i.e. co-complete



Categories to Haskell

data ConeOverTwo a b t = CoT (a -> t) (b -> t)

cdafcat Col imse Co M= Corals et s e a s ats)
—— Colim (ConeOverTwo a b) === Either

data ConeOverZero t = CoZ

—= Colim ConeOverZero === Void



Universal Properties from Universal Quantification!

data ConeOverTwo a b t = CoT (a -> t) (b -> t)

daltasCelnmafa==aColam: (forall st fata=—rat)

fizs
eatthersa~schither-a -ba=—>

(a -=> ¢) -=> (b ->c¢c) -> ¢
either2 :: Colim (ConeOverTwo a b) ->

(=)= (A= C) =00
eather2=Colitm=hy g = fC ol =)

Exercise — work the isomorphism through by hand.

=



Why does this work!?

Types of \x -> x

forall a. a -> a

Num a => a -> a \ \

SiEEa) A e )
Er=— () d 5§

ERe = P Double -> Double

\ Universally Quantified
Even -> Even Types are Initial Types



Categories In Haskell
Edl

at
data ConeOverLoop t = CoL (t -> t) t

type Nat = Colim ConeOverLoop

“--- Z

FereomiissNat =>=-Tnt
FromNSiColadm s =t Col =sicc=05)
TON === Na

toN n = Colim (\(CoL s z) -> last $ take (ntl) $ iterate s 2z)

Colimits ~= Initial Algebras ~= Church Encodings

Data ~= Functions



Whoa

—PLista

data IndexedConeOverLoop a t = ICoL (a -=> t -> t) t

type List a = Colim (IndexedConeOverLoop a)

fFrOmMEITSE = e e lL Sterel == R
Fromiis tr2(Colsim - R)re=" s EC ol s =n )
oL st Sl S e

toList xXs =" Col ITmE(NECoi-cr Zo —>Ffoldrd 2 XS )



In Fact...

VOld_>F vOld—> F (F Void) =

!
.. 4 L
? 4
", . °
.. ?
., . .
4 ® .
?
.. ? 4 )
L .Q \ 2
?
? 4 4 L
. @ Py
° 'S
?
R o .,
.. V'S

4 . F 4
IS
%

"AA ‘



In Fact...

Void =——pf V0ld =———p F (F VOid) =————

Adamek’s Theorem:

Under certain conditions
(F is co-continuous, etc) then:

The colimit of the chain
induced by iteration of F

is the initial F algebra.



Thinking with Universal Properties

* Date recurrence rules (calendar appointments, meeting
schedules, scheduled batch procedures and reports,
scheduled bond payments)

+ data Sched = Daily | Weekly [1-7] | MonthlyAbsolute [1-31] |
MonthlyRelative [1-7] [1-4] | JointSchedule Sched Sched | ..

* interpSched :: Sched -> Day -> Day

+ interpSched :: Sched -> Day -> Nat

+ type GenSched (Day -> Nat)

+ data GenSched GenSched (Day -> Maybe (Nat, GenSched))



Thinking with Universal Properties

+ data GenSched = GenSched (Day -> Maybe (Nat, GenSched))

+ data GenSched a = GenSched (a -> Maybe (Nat, GenSched a))
* ... by universal nonsense ...
# type GenSched a = a -> [Nat]

# A universal schedule representation.



Clojure’s Transducers

+ type Reducer a = forall z. (a -> z =-> 2)

+ type Transducer a b = forall z. (a -=> z => z2) => (b -> z -> 2)

“ ... By abstract nonsense

« Transducer a b === -> [a]

“ (htt ps: / [ oleksandrmanzyuk.wordpress.com /2014 /08/09/transducers-are-monoid-

homomorphisms /

http:/ /tel.github.io / posts/ typing-transducers /)



https://oleksandrmanzyuk.wordpress.com/2014/08/09/transducers-are-monoid-homomorphisms/
http://tel.github.io/posts/typing-transducers/

Just One More Thing...

« Take some category C, now look at “things ‘containing’
C but that have all colimits.” Now take the initial such
thing... what is it?

The Yoneda Embedding



0
£
0
—
\
X
Ll

0
=X
"
©
- -




