
NJPLS, Sept 2016

Executable Categorical 
Models of Type Theory

Gershom Bazerman /
S&P Global Market 
Intelligence



The Starting Point
Curry-Howard : Type Theoretic/Computational Semantics of 
Logic
——
Lawvere-Lambek : Categorical Semantics of Logic

Conversely

Programming Languages/Type Theories give rise to Logics
—>
Categories give rise to Logics





The Research Program

❖ Start with a Computational Encoding of Category 
Theory

❖ Directly Produce Embedded Programming Languages

❖ Study Relationships to Fully Typed Embeddings, 
Variable Binding Representation, Domain Specific 
Languages, etc.



Cartesian Closed Categories and the STLC
In Haskell/Agda we often have indexed terms of the form

data Term ctx typ where…

(where context need not only be free variables, but region markers, resource 
quantifiers, etc).

Infix that gives us

ctx :- typ

A full term in the object language has the type precisely of a typing judgement — 
Γ ⊢ A
(and an inhabitant of this type — a term in our host language that is also a term 
in our embedded language, is the computation that bears witness to this 
judgement).



Cartesian Closed Categories and the STLC

Γ ⊢ A

Weakening on the left allows strengthening on the right.

The turnstile has mixed variance.

Γ → A

Hom(Γ, A)

New challenge: in what class of categories do contexts and terms live side by side 
as objects.



Cartesian Closed Categories and the STLC

Challenge: in what class of categories do contexts and terms live side by side as 
objects.

Approach: Study the structure necessitated by contexts, and then pick a category 
in which all objects have this structure.

1) Contexts have monoidal structure. You can append to them, you can drop 
from them, you can project from them.

2) Contexts have exponential structure. From A, A -> B we can conclude B.

Result: we take typing judgments to be given as homs of a cartesian closed 
category.



Cartesian Closed Categories and the STLC

We take typing judgments to be given as homs of a cartesian closed category.

In a natural deduction system we look particularly at those homs into a one 
element context.

Given a category C and a particular fixed element A, this yields a slice category 
C/A. In our simple setting, such categories themselves will not necessarily be 
cartesian closed.

This also yields a functor from each element A of our category of types to the set 
of all its inhabitants. Hence terms are fibers of presheaves.



Code

{-# LANGUAGE 
DataKinds, 
TypeOperators, 
MultiParamTypeClasses, 
TypeFamilies, 
GADTs, 
ScopedTypeVariables, 
RankNTypes, 
PolyKinds,
FlexibleContexts, 
UndecidableInstances #-}



Code

-- We begin with objects of cartesian closed 
categories over some base index of types.
data TCart b = TUnit 
             | TPair (TCart b) (TCart b) 
             | TExp (TCart b) (TCart b) 
             | TBase b

-- Base indices are mapped to types via Repr
type family Repr a :: *

-- Cartesian objects over the base are mapped to 
types via CartRepr
type family CartRepr a :: *
type instance CartRepr (Ty TUnit) = ()



Code
-- Ty is used to wrap polykinded things up in kind *
data Ty a

type instance CartRepr (Ty (TBase a))   = 
    Repr (Ty a)
type instance CartRepr (Ty (TPair a b)) = 
    (CartRepr (Ty a), CartRepr (Ty b))
type instance CartRepr (Ty (TExp a b))  = 
    CartRepr (Ty a) -> CartRepr (Ty b)

data ABase = AInt | AString | ADouble

type instance Repr (Ty AInt) = Int
type instance Repr (Ty AString) = String
type instance Repr (Ty ADouble) = Double



Code
-- A Context b is a list of cartesian objects over 
base index b
data Cxt b = CCons (TCart b) (Cxt b) | CNil

-- CxtArr a b is a judgment a |- b
-- when b contains multiple terms this is a sequent
--
-- CxtArr a b -> CxtArr c d is an inference rule
--   a |- b
-- ---------
--   c |- d

data CxtArr :: Cxt a -> Cxt a -> *  where
  -- To be a category we must have id and composition
  CXAId  :: CxtArr a a
  CXACompose :: CxtArr b c -> CxtArr a b -> CxtArr a 
c



Code
  -- We have a terminal object
  CXANil :: CxtArr a CNil

  -- We have face maps
  CXAWeaken :: CxtArr (CCons a cxt) cxt

  -- We have degeneracy maps
  CXADiag :: CxtArr (CCons a cxt) (CCons a (CCons a 
cxt))

  -- We have additional "degeneracy" maps given by 
every inhabitant of our underlying terms
  CXAAtom :: CartRepr (Ty a) -> CxtArr cxt (CCons a 
cxt)



Code

  -- We also have a cartesian structure
  CXAPair  :: CxtArr cxt (CCons a c2) -> CxtArr cxt 
(CCons b c2) -> CxtArr cxt (CCons (TPair a b) c2)
  CXAPairProj1 :: CxtArr (CCons (TPair a b) cxt) 
(CCons a cxt)
  CXAPairProj2 :: CxtArr (CCons (TPair a b) cxt) 
(CCons b cxt)

  -- And a closed structure (aka uncurry and eval)
  CXAEval  :: CxtArr (CCons (TPair (TExp a b) a) cxt) 
(CCons b cxt)
  CXAAbs   :: CxtArr (CCons a cxt) (CCons b c) -> 
CxtArr cxt (CCons (TExp a b) c)



Code

-- We give axioms on our category as conditions on 
coherence of composition
cxaCompose :: CxtArr b c -> CxtArr a b -> CxtArr a c
cxaCompose CXAId f = f
cxaCompose f CXAId = f
cxaCompose CXANil _ = CXANil
cxaCompose CXAPairProj1 (CXAPair a b) = a
cxaCompose CXAPairProj2 (CXAPair a b) = b
cxaCompose CXAWeaken CXADiag = CXAId
cxaCompose h (CXACompose g f) = 
             CXACompose (cxaCompose h g) f
— this can get stuck
cxaCompose f g = CXACompose f g



Code

instance Category CxtArr where
    id = CXAId
    (.) = cxaCompose

data Term cxt a = 
    Term {unTerm :: CxtArr cxt (CCons a CNil)}



This Yields de Bruijn
varTerm :: Term (CCons a CNil) a
varTerm = Term CXAId

absTerm :: Term (CCons a cxt) b -> Term cxt (TExp a 
b)
absTerm = Term . CXAAbs . unTerm

appTerm :: Term cxt (TExp a b) -> Term cxt a -> Term 
cxt b
appTerm f x = Term (CXAEval . (CXAPair (unTerm f) 
(unTerm x)))

tm_id :: Term CNil (TExp a a)
tm_id = Term (CXAAbs CXAId)
-- tm_id = absTerm varTerm

tm_k :: Term CNil (TExp b (TExp a b))
tm_k = Term . CXAAbs . CXAAbs $ (CXAWeaken . CXAId)



There’s Another Exponential

  CXALam :: (forall c. 
             CxtArr c cxt -> 
             CxtArr c (CCons a c2) -> 
             CxtArr c (CCons b c2))
          -> CxtArr cxt (CCons (TExp a b) c2)

We’re in a category of presheaves: Context^op -> Set
This category is cartesian closed by definition, with an exponential given for P, Q at an object C 
as

Hom(y(C)xP,Q)
—>
Nat(y(C)xP,Q)
—>
forall D. y(C)(D) -> P(D) -> Q(D)
—>
forall D. Hom(C,D) -> P(D) -> Q(D)



There’s Another Exponential
  CXALam :: (forall c. 
             CxtArr c cxt -> 
             CxtArr c (CCons a c2) -> 
             CxtArr c (CCons b c2))
          -> CxtArr cxt (CCons (TExp a b) c2)

cxaCompose CXAEval (CXAPair (CXALam f) g) = f CXAId g

lamt :: 
  (forall c. CxtArr c cxt -> Term c a -> Term c b) ->  
  Term cxt (TExp a b)
lamt f = Term (CXALam (\m x -> unTerm (f m (Term 
x))))



Now we can interpret
-- Interpretation does the obvious thing
interp :: Term CNil a -> CartRepr (Ty a)
interp (Term (CXAAtom x)) = x
interp (Term (CXAPair f g)) = (interp (Term f), 
                               interp (Term g))
interp (Term (CXALam f)) = 
     interp . Term . f CXAId . unTerm . abst
interp (Term (CXAAbs f)) = 
     interp (Term (CXALam $ \_ x -> f . x))

subst :: Term (CCons a cxt) t -> Term cxt a -> Term 
cxt t
subst = appTerm . absTerm

nbe :: Term CNil a -> Term CNil a
nbe = abst . interp



Variable binding and HOAS
lam :: (forall c. Term c a -> Term c b) -> Term cxt (TExp a b)
lam f = lamTerm $ \ h -> f

tm_id = lam $ \x -> x

-- errr
tm_k = lam $ \x -> lamt $ \g y -> appArrow g x

-- cripes!
tm_s = lamt $ \h f -> 
       lamt $ \h1 g -> 
       lamt $ \h2 x ->
         appTerm (appTerm (appArrow (h1 . h2) f) x) 
                 (appTerm (appArrow h2 g) x)



Variable binding and HOAS

A refresher:

“Plain” HOAS admits ‘exotic’ terms that can case on the value they are given.

We can recover a tight representation by forcing our HOAS terms to be polymorphic over the 
type of the variable representation.  (Weirich/Washburn)

However: as as discussed by Dan Licata in his thesis, “plain HOAS” isn’t logically bad, it just 
corresponds to something else — terms from the host language which are admissible into the 
logic as axioms. (As opposed to terms in the host language which are derivable in the logic as 
tautologies).



Variable binding and HOAS
Claim/conjecture: 

Terms written with our “Categorical Abstract Syntax” that do not inspect their arguments are 
parametric (free) in the context they range over. This is precisely the statement that they are 
derivable in any context.

Terms written in the same fashion that do inspect their arguments can only do so by fixing the 
type of the context. This is the statement that they are admissible in a particular context.

e.g.:
addOne :: Term CNil (TBase AInt) -> Term CNil (TBase AInt)
addOne = abst . (+(1::Int)) . interp

Note:  the lattice structure of derivability and admissibility of terms should itself yield a 
realization in the internal hom of our category, a la PShf(C/j) =~ PShf(C)/y(j).



Variable binding and HOAS

but:
oops :: Term c (TBase AInt) -> Term c (TBase AInt)
oops (Term x) = case x of
    (CXAAtom x) -> Term (CXAAtom (1::Int))
    (CXACompose _ _) -> liftTerm $ Term (CXAAtom (5::Int))

We need to eliminate CXACompose or prove it never occurs or we’re not in a genuinely free 
CCC. Conjecture: this is the same condition that determines parametric terms are genuinely 
derivable terms.



One binder for the price of two

tm_s = lamt $ \h f -> 
       lamt $ \h1 g -> 
       lamt $ \h2 x ->
         appTerm (appTerm (appArrow (h1 . h2) f) x) 
                 (appTerm (appArrow h2 g) x)

The reindexing term (morphisms in the slice) “forgets” to de Bruijn indexing, and induces the 
bound term.

Forgetting the reindexing term results in traditional HOAS.



Yoneda: The Ultimate Lambda

Categorical Abstract Syntax

Parametric HOAS de Bruijn



Related Work

“Introduction to Higher Order Categorical Logic,“ J. Lambek and P.J. Scott
“The Maximality of the Typed Lambda Calculus, and of Cartesian Closed Categories,” K. Dose 
and Z. Petric
“Unembedding Domain-Specific Languages,” R. Atkey
“Embedding F,” S. Lindley
“Type Theory in Type Theory using Quotient Inductive Types,” A. Kaposi and T. Altenkirch



Future Work
❖ Linear Logics

❖ Dependent Theories (Contextual Categories, CwA, CwF).

❖ Parametric Theories (System F).

❖ Effectful theories (relation to coeffects).

❖ Formalization

❖ Translation of techniques to practical use

❖ Down with the bureaucracy of reindexing!



Thanks Due

This project is especially inspired by many conversations with Atze van der 
Ploeg. Additional valuable discussions particularly with Stephanie Weirich, 
Ambrus Kaposi, and Peter LeFanu Lumsdaine. Thanks also to all members of the 
NY Topos Theory Reading Group/Category Theory Seminar.


