
A Totally Predictable Outcome: An Investigation of
Traversals of Infinite Structures

Gershom Bazerman
Arista Networks
San Jose, USA

Abstract
Functors with an instance of the Traversable type class can
be thought of as data structures which permit a traversal of
their elements. This has been made precise by the correspon-
dence between traversable functors and finitary containers
(also known as polynomial functors) – established in the con-
text of total, necessarily terminating, functions. However,
the Haskell language is non-strict and permits functions that
do not terminate. It has long been observed that traversals
can at times in fact operate over infinite lists, for example in
distributing the Reader applicative. The result of such a tra-
versal remains an infinite structure, however it nonetheless
is productive – i.e. successive amounts of finite computation
yield either termination or successive results. To investigate
this phenomenon, we draw on tools from guarded recursion,
making use of equational reasoning directly in Haskell.

CCS Concepts: •Mathematics of computing; • Theory
of computation→ Program semantics;

Keywords: Traversable Functors, Guarded Recursion, Pro-
gram Calculation
ACM Reference Format:
Gershom Bazerman. 2022. A Totally Predictable Outcome: An In-
vestigation of Traversals of Infinite Structures. In Proceedings of the
15th ACM SIGPLAN International Haskell Symposium (Haskell ’22),
September 15–16, 2022, Ljubljana, Slovenia. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3546189.3549915

1 Introduction
Traversable functors, first introduced by McBride and Pater-
son [24], provide a sort of “complement” to the Applicative
type class.While the Applicative type class picks out functors
which have a (closed) lax-monoidal structure, the Traversa-
ble type class picks out functors which can distribute over

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9438-3/22/09. . . $15.00
https://doi.org/10.1145/3546189.3549915

this monoidal structure. We recall below the definitions of
Applicative and Traversable which we will be generalizing
in this paper:
class Functor f => Applicative f where

pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

class Functor t => Traversable t where
sequence :: Applicative f => t (f a) -> f (t a)

Typically the Traversable type class is given by an opera-
tion traverse rather than sequence but the former is given by
traverse f = sequence . fmap f and the latter is conceptually
clearer for our purposes.

By results (independently) of Bird, Gibbons et. al. [6] and
Jaskelioff and O’Connor [20] in a total setting, traversable
functors correspond to finitary containers, which is to say
that any traversable functor is equivalent to one given as
the sum of finite products of its underlying type. However,
recursive structures in the Haskell language are not neces-
sarily finitary. For example, the list functor includes lists
which have infinite numbers of elements, i.e. streams. Often,
as defined in Haskell, traversals naturally operate on such in-
finite structures. As a trivial example, sequence (repeat id) 1,
which makes use of the Reader applicative yields an infinite
list [1,1,1...].

However, not all applicative functors are amenable to infi-
nite traversals. For example, making use of the Maybe monad,
sequence (repeat (Just 1)) yields ⊥. Similarly, an infinite se-
quence making use of the list monad or ZipList applicative
functor (i.e. sequencing repeat [1] or repeat (ZipList [1])

also yields ⊥.
More interestingly yet, some applicative functors allow

traversals that are only productive (non-⊥) in some portion
of their results. For example, making use of the State monad:
runState (sequence (repeat (modify (+1) >> get))) 0

yields a tuple whose first projection is the infinite list
[1,2,3...] and whose second projection is ⊥.
Algebraic reasoning about functions like these can be

tricky, because equational reasoning is usually performed
relative to the total, terminating fragment of the Haskell lan-
guage. Nonetheless, this topic is of particular interest, since
as the State example shows, infinite traversals very naturally
can be used to implement stream transducers – functions
which operate productively over infinite streams, accumu-
lating information and transforming them elementwise, and
such transducers are natural ways to present many classic

39

https://doi.org/10.1145/3546189.3549915
https://doi.org/10.1145/3546189.3549915

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia Gershom Bazerman

online streaming and incremental algorithms. This paper
will draw on the toolkit of guarded recursion to provide a
straightforward way of using equational reasoning to con-
sider properties of terms that may be infinite. Then, making
use of this kit, we will describe a class of functors, which
we term Predictable functors, that are suited to performing
infinite traversals. Further, we hope the techniques devel-
oped in studying this particular question can be made use
of more generally in formalizing algebraic reasoning about
potentially-non-terminating computations.
The paper is structured as alternating between introduc-

tion of new concepts and practical applications of these to
the investigation at hand. Section two will introducing a for-
mal Later modality in the form of an applicative functor, and
demonstrate how this can permit reasoning about total func-
tions over infinite data. Section three will then introduce
Predictable functors at a high level, which are defined by
their relationship to the Later modality. In particular, we can
derive the result that for a traversal to be possibly infinite is
not a restriction on the structure being traversed, but rather
a restriction on the applicative performing the traversal – in
particular such an applicative must commute with Later up
to a certain notion of equivalence – loosely speaking this
amounts to being free of coproducts.

To reason about extracting properties from guarded recur-
sive reasoning to general code, section four will introduce an
inductively defined “evaluation,” which is also used to define
a form of bisimilarity – a necessary tool in stating precisely
the equational properties of Predictable functor. Section five
introduces stability, which is a way of thinking about how
guarded recursive code can model partiality and potential
nontermination. Section six then makes use of this toolkit
to investigate predictable functors in more detail, and what
operations predictablility is generated by and closed under.
Section seven then introduces an extended notion of bisim-
ilarity and evaluation which extends to arrow types, and
section eight makes use of this to give a concrete result on
the relationship of guarded-recursive infinite traversals and
standard traversals in Haskell.

Finally, section nine applies the theory developed to study
many concrete examples of infinite traversals using standard
monads, and section ten dwells on some tricky questions
that arise from this sort of fine-grained analysis.

2 Equipping Haskell with a Formal Later
Modality

In 2000, Nakano introduced a typed modal logic for self ref-
erential formulae which took semantics in a typed lambda
calculus with a modality for guarded recursion [27]. In this
logic, types are able to capture when certain data must be
evaluated in order for further evaluation to proceed. A term
of type a which cannot yet be evaluated is given the type
Later a, expressing that it may be passed around abstractly,

but its structure is not yet necessarily available for computa-
tion. In this guarded recursive logic, there is necessarily no
general function forall a. Later a -> a, nor is there a general
fixpoint operator. However, guarded recursion is allowed in
the form of a function lfix :: (Later a -> a) -> a. This says
“if you give provide a function that embeds a Later a into an
a, then it can be iterated.” Such a function allows a fixpoint
because the input function, by construction, cannot evaluate
the thing it is given, only manipulate it abstractly. Hence,
the Later modality makes explicit the rule of thumb that pro-
grammers who work with the fixpoint operator have already
internalized.

In a system like this, necessarily finite and possibly infinite
data are distinguished through the use of the Later modality.
Consider for example, the types
data List a =

LNil
| LCons a (List a)

data Stream a =
Nil

| Cons a (Later (Stream a))

The former is necessarily finite, as without a general fixpoint
operator, no infinite inhabitant can be constructed. However,
the latter is possibly infinite. For example, lfix (Cons 1) will
produce an infinite stream of ones.
By an insight of Atkey and McBride [5], aside from lfix,

the Later modality has exactly the operations of an applica-
tive functor. In particular, we have:
later :: a -> Later a
lap :: Later (a -> b) -> Later a -> Later b

Further, in combination these induce functoriality. These
operations come with natural intuitions corresponding to
the intended meaning of Later. “If I know something now, I
still know it later. If I will have a function later, and I will
have a value later, then later I also will be able to have the
result of applying that function to that value.”
The recognition of Later as an applicative functor means

that one can program in a fragment of Haskell which enjoys
the same properties as a type system with genuine guarded
recursion – i.e. infinite structures can be manipulated in a
fashion such that no function yields ⊥. The recipe for doing
so is painfully simple. One simply introduces an abstract
datatype equipped with the proper type class instances, and
an lfix operator, and then does not export its eliminator.
This is to say one introduces a module supplying the fol-

lowing, and for all code in the fragment we are reasoning
about, does not import the constructor Later, thus enforcing
abstraction.
newtype Later a = Later a deriving Functor

instance Applicative Later where
pure = Later
Later f <*> Later x = Later (f x)

40

A Totally Predictable Outcome: An Investigation of Traversals of Infinite Structures Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

lfix :: (Later a -> a) -> a
lfix f = fix (f . pure)

Further, for all code in sight, one adheres to the discipline
of not allowing any direct recursion to occur, and instead
using the lfix operator uniformly. Working with this sort
of discipline without compiler support is not necessarily a
good approach for genuine programming in the large. How-
ever, for small-scale equational reasoning it suffices, as the
condition is straightforward to check by hand.

We call this a “formal” modality because rather than intro-
duce special rules for it into the type-system and semantics
of a language, tracking of Later is introduced purely formally,
as a syntactic device. In the course of this paper, we will refer
to terms written with the above discipline (making use of
Later and lfix without explicit recursion) as guarded recur-
sive terms, and generally to code written with this discipline
as in the guarded recursive fragment. Additionally, we will
refer to datatypes whichmake use of the Latermodality (such
as Stream) as guarded datatypes, types of code written in the
guarded recursive fragment as guarded recursive types, and
functions written in this fragment (whether or not they are
recursive) as guarded recursive functions.

As an example of working in guarded recursive fragment,
we present a function for interleaving possibly infinite streams,
as well as merging them with a (truncated) zip. We leave it
as an exercise to verify that, e.g., the reverse function cannot
be written.
sinterleave :: Stream a -> Stream a -> Stream a
sinterleave = lfix $ \f s1 s2 -> case s1 of

(Cons x xs) -> Cons x (f <*> pure s2 <*> xs)
_ -> s2

szip :: Stream a -> Stream b -> Stream (a, b)
szip = lfix $ \f s1 s2 -> case (s1, s2) of

(Cons x xs, Cons y ys) ->
Cons (x,y) (f <*> xs <*> ys)

_ -> Nil

3 Predictable Functors and Infinite
Traversals

With the above tools in hand, we are ready to provide an
introduction to the central idea of this paper. The forward
implication of the correspondence between traversable func-
tors and finitary containers is simply the observation that
traversable functors are closed under arbitrary sums and fi-
nite products [21]. The goal is to extend traversals to handle
guarded types such as Stream. Hence, we seek to extend the
class of operations that “infinite-traversable” functors are
closed under beyond sum and finite product to also compo-
sition with Later. This amounts to having (an appropriately
lawful) function Later (t (f a)) -> f (Later (t a)) – i.e. a
function that witnesses that if t is infinite-traversable, then
so too is the composition of Later with t. This function in

turn decomposes into the composition of
fmap sequence :: Later (t (f a)) -> Later (f (t a)) with a
function predict :: Later (f a) -> f (Later a). This latter
function makes no mention of t and so it is effectively not a
property of traversable functors, but rather of the applicative
functors used to traverse them. This motivates defining a
type class, Predictable as follows:
class Predictable f where

predict :: Later (f a) -> f (Later a)

The inspiration for the name is that it turns out that,
loosely speaking, a Predictable functor is one where, without
inspecting the structure, we can “predict” the outermost con-
structor. In GHC argot, a predictable functor is one where it
is safe to perform an irrefutable pattern match.
In turn, we can now define a candidate type class for

infinite-traversable functors:
class ITraversable t where

isequence :: (Applicative f, Predictable f) =>
t (f a) -> f (t a)

Since these classes are for reasoning in the guarded recur-
sive fragment, we require that their instances be given only
using tools from that fragment. Further, we require three
laws analagous to those for standard traversable functors.
Namely:

• Identity:
isequence . fmap Identity = Identity

:: t a -> Identity (t a)

• Composition:
isequence . fmap Compose =
Compose . fmap isequence . isequence

:: t (f (g a)) -> Compose f g (t a)

• Naturality:
t . isequence = fmap isequence . t

:: t (f a) -> g (t a)

where t is a natural transformation between predictable
applicative functors, which is to say that it commutes with
applicative operations and “weakly” commutes with predict

(i.e. t . predict is equivalent to predict . fmap t in a sense
that will be made precise in the next section).

As an example, here is the ITraversable instance for Stream.
instance ITraversable Stream where

isequence = lfix $ \rec x -> case x of
Nil -> pure Nil
Cons a s ->

Cons
<$> a
<*> predict (rec <*> s)

Syntactically, it looks nearly the same as the Traversable

instance for lists, but it makes a judicious use of predict

to align the Later uses in the course of the traversal. As
such, straightforward equational reasoning, essentially no
different than that for the Traversable instance for lists, serves
to verify that it satisfies the laws.

41

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia Gershom Bazerman

In general, for any strictly positive recursive datatype,
one can construct a related, “potentially infinite” guarded
datatype by syntactically guarding each recursive occurrence
by Later. Since any Traversable datatype can be written as
such a strictly positive type, then it follows that for every
Traversable datatype there is a recursively guarded variant
which can be given an instance of ITraversable. So while the
theory of Traversable datatypes, as formulated in sets or the
strictly terminating fragment of the lambda-calculus yields a
correspondence to finitary containers, those same data types,
considered in a richer semantics, need not be finite, and even
in that setting where they are not finite, still admit a lawful
instance of ITraversable.
As a further example of this, we give the type of binary

trees with labeled leaves, as well as the recursively guarded
version of it, and a corresponding ITraversable instance for
the latter:

-- "normal" tree
data Tree a = Leaf a | Branch (Tree a) (Tree a)

-- guarded tree
data ITree a =

ILeaf a
| ITBranch (Later (ITree a)) (Later (ITree a))

-- corresponding infinite traversable instance
instance ITraversable ITree where
isequence = lfix $ \rec x -> case x of

ILeaf a -> ILeaf <$> a
ITBranch x y ->

ITBranch
<$> predict (rec <*> x)
<*> predict (rec <*> y)

The next question to consider is when an applicative func-
tor may be given a valid Predictable instance. However, this
requires specifying what a “valid” predictable instance is. In
turn, to do so, some new tools must be developed. The gen-
eral idea is that our use of types to track guarded recursion
in a fragment of Haskell is merely a way of “annotating”
existing code to make it make sense. As such, the function
predict is intended to be merely an accounting device, wit-
nessing some property of the underlying functor, and not
to do actual computation. So we might wish to require it be
an isomorphism on types. However, in obviously desirable
cases it cannot have an inverse. For example, it is easy to
send Later (a -> b) to a -> Later b, but there is no general
function going in the other direction. Therefore, we need a
notion of equivalence between terms of heterogenous type
that suffices to capture the intended semantics – for this, we
introduce something we term bisimilarity by evaluation.

4 Bisimilarity by Evaluation
We now consider certain equivalence relations on guarded
recursive types that are weaker than that given by isomor-
phism, and which we will need to state more precisely the
laws discussed above, and more generally to carry out equa-
tional reasoning in the guarded recursive fragment.

As a general motivation, we note that Later is not a monad,
and in particular, there is no function of the form:
forall a. Later (Later a) -> Later a

Intuitively, if such a thing existed, it would “collapse” all
future timesteps into a single timestep. As such, it would
allow unguarded recursion as long as it occurred under at
least a single Later.

Nonetheless, we wish to use the guarded recursion modal-
ity to reason about terms in Haskell – a nonstrict language
with general recursion. As such, we want to consider equiva-
lence between terms of type Later a and Later (Later a), for
example. The appropriate notion of equivalence between
terms in a nonstrict setting, like that between concurrent
terms, should be some form of bisimilarity. In essence, we
wish terms to be considered equivalent if under a sequence
of abstract observations, each contains the same data, with
the same causal ordering dependency.

The reasonwe do notwant amorphism from Later (Later a)

to Later a is because this would allow a use of lfix to perform
unbounded recursion. However, for purposes of reasoning
about equivalence, rather than calculation, such a map is
reasonable – and indeed, we can go further. For purposes of
reasoning up to equivalence, a map Later a -> a is reason-
able as well. In general since Later is a newtype, there will
be an associated map from any type with Later involved to
one without Later involved, which, considering both purely
as Haskell types, will be an isomorphism.
The approach we take is that terms are defined in a total

setting where there is no general map Later a -> a and all
recursion is via lfix. However, bisimilarity between terms is
calculated by “evaluating” these terms to a nonstrict setting
with general recursion, and then calculating equivalence
using the standard tools of denotational semantics. Rather
than constructing a theory of bisimilarity on guarded recur-
sive types intended to capture when they are equivalent in a
nonstrict, recursive setting, we simply construct a procedure
for evaluating such types to a nonstrict, recursive setting,
and directly reason about their equivalence using tools that
already exist. This may not seem close to the usual definition
of bisimilarity, but it is inspired by the approach of calcu-
lating bisimilarity on concurrent processes by reducing the
problem to an equivalence relation on their semantics in
synchronization trees (the latter relation, in the literature,
also often confusingly named bisimilarity).

Continuing the thread of reasoning internally in Haskell,
we represent evaluation by means of a type class with an
associated type:

42

A Totally Predictable Outcome: An Investigation of Traversals of Infinite Structures Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

class EvalLater a where
type Result a
leval :: a -> Result a

We require that Result a is free of any Later in its definition.
In keeping with Later being a purely formal construction, in
turn this notion of evaluation is equally formal – it does not
in fact “evaluate,” compute, or beta-reduce terms in any sense.
We would also like to require that leval is an isomorphism
of Haskell types, but for certain instances (such as the Delay

monad discussed later) this is too strong. Instead, we require
that leval is an isomorphism of Haskell types only in the
case where its domain may not contain an infinite nesting
of Later, and will revisit the other case in section five. Hence
leval transports types across a morphism (frequently an
isomorphism) that eliminates the use of the Later newtype.
It may be useful to consider this approach of pairing terms
with their semantic meaning via a type class as an internal
representation in Haskell of the technique of logical relations.
The most important instance is a recursive instance that

strips away an outer Later and proceeds to continue to eval-
uate the result. Additionally, all ground types we wish to
consider must be equipped with an appropriate instance, and
instances for products, sums, and so forth all arise very me-
chanically. Importantly, this code is not part of the guarded
recursive fragment we are reasoning about, but rather be-
longs to the equational metatheory, and thus freely pattern
matches on Later. Some example instances are as follows.
instance EvalLater a => EvalLater (Later a) where
type Result (Later a) = Result a
leval (Later x) = leval x

instance EvalLater Int where
type Result Int = Int
leval x = x

instance (EvalLater a, EvalLater b) => EvalLater (a, b)
where

type Result (a, b) = (Result a, Result b)
leval (x, y) = (leval x, leval y)

As noted early on, when working in the guarded recursive
fragment of the language, recursive structures which do not
make use of Later are already necessarily finite. As such,
evaluation on them remains a purely formal operation. For
example, for lists we have:
instance EvalLater a => EvalLater [a] where

type Result [a] = [Result a]
leval xs = fmap leval xs

We will refer to structures which do not make use of
Later either directly or indirectly as finite with regards to the
guarded recursive fragment.

The only slight complication arises in the case of guarded
datatypes, which may themselves make use of Later. In such
a case, the need for an associated type becomes very clear, as
we are evaluating to an entirely different type, whichwe have

established is isomorphic, rather than to a type obviously
syntactically related to the given type. For example, partially
infinite streams may be evaluated like so:

instance EvalLater a => EvalLater (Stream a) where
type Result (Stream a) = [Result a]
leval Nil = []
leval (Cons x xs) = leval x : leval xs

In general, this construction allows that every recursively
guarded variant of a strictly positive datatype can evaluate
to the original type.

Functors all enjoy the property that leval = lt . fmap leval,
where lt is an appropriate natural transformation perform-
ing “outer evaluation” – i.e., evaluation on functors factorizes
into a parametric evaluation on the “shape” of the functor
and the fmap of an elementwise evaluation on the contents.
As such while Result is only defined on things of kind * we
also will refer to Result fwhere f is a functor. Finite functors
enjoy the further property that lt is id – which is to say that
the outer shape of a finite functor is already free of Later,
and so evaluation of such a functor need only evaluate its
contents.

We may now define two terms x and y of types a and b as
evaluated-bisimilar when there is an isomorphism
f :: Result a -> Result b and further f (leval x) = leval y.
For our purposes, this isomorphism of evaluated terms will
typically be id.
There is thus a sense in which guarded recursive types

may be seen as fibered over isomorphism classes of standard
Haskell types, providing for each such class a (partially or-
dered) set of possible refinements of evaluation dependency.
This is to say that many guarded recursive types may eval-
uate to the same (isomorphism class of a) type, but those
guarded recursive types will themselves not be necessarily
isomorphic as guarded recursive types – instead, they will
be partially ordered by how many inhabitants of that eval-
uated type they represent. For example, the types Stream a,
Later [a], and Later (Later [a]) all “live above” [a], but more
lists may be represented by Stream a than by Later [a].
It is worth noting that evaluation is defined on all terms,

not just those in the guarded-recursive fragment, and conse-
quently evaluated-bisimilarity as a relation can extend not
only to guarded recursive terms, but to general terms.
When leval is an isomorphism, the isomorphism of an

evaluated-bisimilarity extends to a productive isomorphism
between the two bisimilar terms themselves, and not just
their Results. However this isomorphism need not be itself a
guarded recursive function. Because we wish to state identi-
ties in the guarded recursive fragment relative to functions
that themselves are guarded recursive, and to cover cases
where leval is not necessarily an isomorphism, we introduce
a further notion.

43

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia Gershom Bazerman

A guarded recursive function a -> b is a guarded weak
bi-equivalence (gwbeq) if it sends a term to an evaluated-
bisimilar term. The name is justified because all identities
are clearly gwbeq and further, it is straightforward to show
that the class of gwbeqs is closed under composition and
furthermore satisfies “two out of three” – that is if f :: a -> b

and g :: b -> c and two out of three of {𝑓 , 𝑔, 𝑔⊙ 𝑓 } are gwbeq,
then the third is as well. It is important to note that a gwbeq
of type a -> bwill typically not have a corresponding inverse
gwbeq of type b -> a – though in the next section, we will
consider the special case where this does occur.
We will also at times consider bi-equivalences which are

not necessarily written in the guarded recursive fragment,
and will refer to them as evaluated bi-equaivalences (ebeq).
By definition, leval itself is an ebeq.

We can now state the desired law of a predicable functor –
for a valid instance of Predictable, the guarded recursive func-
tion predict :: Later (f a) -> f (Later a)must be a guarded
weak bi-equivalence.

As an example of using gwbeqs in reasoning, we now
prove a further lemma. By construction and definition, a
Predictable functor can commute with all ITraversable func-
tors. Conversely, we can show that if a functor f can com-
mute with all ITraversable functors, then that functor is nec-
essarily predictable. In particular, Later is itself straightfor-
wardly ITraversable. Instantiating isequence at Later yields
Later (f a) -> f (Later a) – precisely the type of predict. By
identity and naturality, we can conclude that this must be a
gwbeq, which shows the function has the desired properties.
Thus we see that being Predictable is both necessary and suf-
ficient for an Applicative functor to yield infinite traversals.

5 Productivity and Stable Values
The goal of this section is to develop a notion of only pos-
sibly productive types in guarded recursion, which will be
made use of in cataloguing instances of Predictable functors.
It is tempting to describe working in a guarded recursive
system as a situation “where the types ensure everything
you write is productive” – but this is a misleading intuition.
The types ensure that no pattern match on any term will
yield ⊥. However, it is possible to encode data that in the
“evaluated” semantics absolutely does yield ⊥ – for example,
an infinite nesting of Later. The point is that, in doing so, the
lack of productivity can be read off directly from the types.
So guarded recursion is a situation where reasoning about
productivity is made manifest at the type level.

More generally, it is useful to to work with types which are
only possibly productive – i.e. where there may be arbitrary
sequences of Later applications. These can be captured by a
Delay type, following Capretta [10].

data Delay a = Now a | Wait (Later (Delay a))

Using this type, one can, for example write a function
to compute the last element (should it exist) of a possibly
infinite stream.
slast :: Stream a -> Delay (Maybe a)
slast = go Nothing

where go = lfix $ \f def s1 ->
case s1 of
(Cons x xs) -> Wait $ f <*> pure (Just x) <*> xs
Nil -> Now def

The same idea can also be used to capture other structures
that are possibly productive, such as possibly productive
infinite streams:
data PStream a =

PNil
| PWait (Later (PStream a))
| PCons a (PStream a)

Corresponding EvalLater instances can also be written for
possibly productive structures, such as below:
instance EvalLater a => EvalLater (Delay a) where

type Result (Delay a) = Result a
leval (Now x) = leval x
leval (Wait x) = leval x

instance EvalLater a => EvalLater (PStream a) where
type Result (PStream a) = [Result a]
leval PNil = []
leval (PWait x) = leval x
leval (PCons x xs) = leval x : leval xs

The leval in these instances is clearly not an isomorphism
of Haskell types. Further, there is no particular rule that
can uniquely determine what the implementation should be.
For example, something isomorphic to Delay () could also be
intended to represent a lazy Peano numeral – and that would
have a significantly different leval implementation. The most
that can be required is that the given function have a right
inverse. Beyond that, the range of possible implementations
of leval is handled with regards to equational properties by
imposing a constraint of “bisimulation-invariance” regarding
the functions we reason over. Both the right inverse and the
invariance constraint will be treated further in section seven.

As discussed earlier, a gwbeq, unlike an isomorphism, may
not be invertible – i.e. there is always a map a -> Later a

and there is no general guarded recursive map in the other
direction, either as an actual retract, or even as a gwbeq. Pos-
sibly productive structures correspond to cases where such
a gwbeq does exist. Inspired by the terminology of “stable
propositions” in modal logic we term types that permit such
a map “Later-stable” or just “stable”. These will play a spe-
cial role in the construction of certain classes of predictable
functors, and can be equipped with a type class as follows:
class Stable a where

wait :: Later a -> a

instance Stable (Delay a) where

44

A Totally Predictable Outcome: An Investigation of Traversals of Infinite Structures Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

wait = Wait

instance Stable (PStream a) where
wait = PWait

As an aside, a gwbeq sending a term to a term that is of a
stable type may be termed a “stabilization” and consequently,
for any type a, Now :: a -> Delay a is the universal (terminal)
stabilization.

6 Examples of Predictable Functors
Here, we consider some examples of predictable functors,
and identify a large class of valid instances. As the instances
below show, Predicable is closed under composition, and
product. Base instances that generate it include exponentia-
tion by a constant (i.e. a function from a type not containing
a), and Later itself.
instance Predictable Later where
predict = id

instance Predictable ((->) r) where
predict x = \y -> fmap ($ y) x

instance (Predictable f, Predictable g, Functor f) =>
Predictable (Compose f g) where

predict = Compose . fmap predict
. predict . fmap getCompose

data Prod f g a = Prod {pr1 :: f a, pr2 :: g a}

instance (Predictable f, Predictable g) =>
Predictable (Prod f g) where

predict x = Prod
(predict (fmap pr1 x))
(predict (fmap pr2 x))

Strikingly, Predictable is not closed under sum. In particu-
lar, consider the type:
data Choice a = C1 a | C2 a

The outermost constructor of the result of predict would
necessarily be C1 or C2 – however, by the construction of
the Later modality, there is no mechanism in the guarded
recursive fragment to determine which one. In other words,
no progress can be made because the choice of outermost
constructor is not predictable.

Nonetheless, this restriction does notmean that Predictable
structures are not closed under product with any constant –
in fact, they remain closed precisely under multiplication by
specific constants – those which are stable. In particular:
instance (Stable c) => Predictable ((,) c) where

predict :: forall a. Later (c, a) -> (c, Later a)
predict x = (wait (fst <$> x), snd <$> x)

As the type signature for predict indicates, the function
needs to move the type c out of the later modality – which
is exactly what is permitted by it being Stable.

The above instance in fact extends to a bi-implication –
((,) c) is predictable if and only if c is stable. In particular,
if Later (c, a) has a gwbeq to (c, Later a) then so too does
(Later c, Later a), and this means that predict implies a mor-
phism Later c -> c that is a gwbeq. The last is, by definition,
stability.

As a loose intuition, if traversable functors are presentable
as polynomials, then strictly-positive predictable functors
are those which are presentable as polynomials concentrated
in a single degree – i.e. of the form 𝑠 ∗ 𝑋𝑐 with s a stable
constant, and c an arbitrary constant.

However, we note that it is possible (though as we will see
later, not necessarily useful) to give a predictable instance
to a not-strictly-positive datatype as well. In particular, we
have, for any contravariant functor f:
predictNegative :: (Contravariant f, Stable r) =>

Later (f a -> r) -> f (Later a) -> r
predictNegative f =

\z -> wait $ fmap ($ contramap pure z) f

Both the contravariant instances and the multiplication in-
stances provide examples of Predictable functors that are not
Representable (i.e. of the form 𝑋𝑐). Further, being Predictable

does not imply being Applicative. For example, (𝑠, 𝑎) is only
applicative with a specified choice of monoidal action for
s. A stronger counterexample generated by this would be
picking an s which is uninhabited (and thus trivially stable).

7 Bisimilarity by Evaluation for Arrow
Types

The constructions thus far describe properties holding in the
guarded recursive fragment. However, an important goal is
to be able to extract reasoning from this fragment and apply
it to general terms, and in particular to establish not only
that isequence can be defined productively, but the conditions
under which a sequence is productive. To do so we need to
extend further our toolkit for reasoning, and in particular,
to extend the notion of evaluated bisimilarity to cover types
which contain arrows. When we wish to consider evaluation
on the function space, the need arises to go in the other
direction as well – that is, to lift general values (which are
posited to satisfy appropriate productivity conditions) back
into the guarded recursive realm. We therefore introduce
the following type class to represent inductively the desired
inverse:
class EvalLater a => LiftLater a where

llift :: Result a -> a

We require that llift be an ebeq, and in particular, a right-
inverse of leval. This is to say that leval . llift should be
the identity.
By recursive definition, the EvalLater class allows for a

meaningful notion of evaluation on arrow types as follows:
instance (LiftLater a, EvalLater b) =>

EvalLater (a -> b) where

45

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia Gershom Bazerman

type Result (a -> b) = Result a -> Result b
leval f = leval . f . llift

instance (LiftLater a, LiftLater b) =>
LiftLater (a -> b) where

llift f = llift . f . leval

Inverses (up to bisimilarity) for various defined evalua-
tions follow mechanically. As some examples:
instance (LiftLater a) => LiftLater (Later a) where

llift = Later . llift

instance (LiftLater a) => LiftLater (Delay a) where
llift = Now . llift

instance (LiftLater a, LiftLater b) =>
LiftLater (a, b) where

llift (x, y) = (llift x, llift y)

instance LiftLater Int where
llift = id

instance LiftLater a => LiftLater (Stream a) where
llift [] = Nil
llift (x:xs) = Cons (llift x) . Later $ llift xs

It is important to note that these inverses do not, and can-
not, send general Haskell terms to guarded recursive terms
which are guaranteed productive. In particular, a guarded
recursive construction of infinitely nested Delay is perfectly
reasonable, and under evaluation it goes to ⊥. Lifting this
back in turn does not land in guarded recursive terms (since
such terms do not directly contain ⊥) but rather in terms
which make use of Later but exist in general Haskell seman-
tics – so the lifting only goes “halfway” back. However, this
halfway back intermediate form is all that is necessary for
the bookkeeping of the ultimate goal, which is simply that
leval be defined properly on function types.
In the following sections, we will assume that all types

in sight have been equipped with appropriate LiftLater and
EvalLater instances. Further, we note that computing with
LiftLater is reasonable, but due to injectivity constraints in
GHC’s checker, EvalLater is a class for reasoning with, but
much less so computing with.

It is important to note that the ability to evaluate functions
does notmean that all algebraic properties of a guarded recur-
sive function necessarily descend to its evaluation. Loosely
speaking, leval is not necessarily functorial – that is to say
leval f (leval x) need not be equal to leval (f x). For exam-
ple, consider a function of type Delay Int -> Bool that returns
True if the outermost constructor is Now and False otherwise.
The action of this function under leval would, on the other
hand, always yield True. The problem is that the function can
detect “how evaluated” its input is, while its evaluation, by
construction cannot. The class of functions that do commute
with leval are those which do not distinguish between “lay-
ers” of Later – i.e. which take bisimilar inputs to bisimilar

outputs. We call such functions bisimulation-invariant, and
bisimulation-invariant properties of bisimulation-invariant
functions descend to their evaluations, as one would desire.

8 Predictable Functors Yield Productive
Traversals

The goal of this section is to explicitly establish that the
productive properties of infinite-traversals in the guarded re-
cursive fragment yield related properties which are generally
useful for traversals even when considering only “normal”
Haskell code (without a Later in sight). In particular, we will
show that all Traversable functors admit Traversable instances
which are productive on predictable applicatives.

We set out to establish when one can “infinite-traverse” a
functor productively. Let us now define productive traversal
more precisely. Productiveness is typically only defined on
functions yielding coinductive structures, and is the prop-
erty that any finite sequence of operations on the result of
such a function will terminate in finite time. However, for a
traversal t (f a) -> f (t a), the applicative functor f that is
the action of the traversal is not necessarily a coinductive
structure. Further, it may yield something with a produc-
tive t a but coupled with a non-terminating component. So
some subtlety is required in defining productivity. For the
purposes of this paper, we say that a traversal h of type
t (f a) -> f (t a) is productive if f has a universal algebra
alg :: forall a. f a -> a, and for an x that does not contain
⊥, no finite sequence of pattern matches on alg (h x) yields
⊥. For example, if we traverse a stream with a Writer monad,
the result is a pair of the accumulated writes, and the stream.
The traversal is productive, because the algebra yields the
second projection (the stream), which is productive in the
typical sense – and this holds true, even though the first
projection (the result of a potentially infinite sequence of
monoidal writes) may itself be ⊥.

Further, we call a guarded traversal productive if the alge-
bra is itself in the guarded fragment, and further, for an x that
is productive (can contain no infinite sequence of Later), then
alg (h x) is likewise productive. By the properties of guarded
recursion, we can “read off” the productivity of a guarded
traversal simply from checking that h is itself productive. It
is straightforward to check that if a bisimulation-invariant
guarded traversal h is productive in the guarded recursive
sense, then the evaluated traversal leval h is productive in
the sense we introduced above.
Earlier, we sketched how any Traversable functor gener-

ates a recursively guarded variant which is an ITraversable.
Here, we consider the converse. Given any ITraversable func-
tor t, then for any predictable applicative functor f, there
is a function seq :: Result t (f a) -> f (Result t a), given
by leval isequence. Because leval is an ebeq, then one can
check that the ITraversable laws descend to the appropriate

46

A Totally Predictable Outcome: An Investigation of Traversals of Infinite Structures Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

Traversable laws. At a high level, everything in sight is ei-
ther removing or adding Later, and since Later is invisible
under leval and all functions we consider are bisimulation-
invariant, then properties established in the guarded re-
cursive fragment hold under evaluation. Notably, among
these properties is productiveness itself. Thus, we can con-
clude that all Traversable functors admit Traversable instances
which are productive on predictable applicatives.

As a fully worked example, we consider traversals of
streams by finitary functors, reasoning equationally, first
fusing the evaluation of the result of the sequencing, and
then fusing the input to the sequencing.
The initial step makes use of the fact that f is a finitary

functor. We then substitute the definition of lfix. Then, we
push the application of leval through the case statement,
and make use of the fact that predict, llift and leval are
all ebeq to substitute between them. Finally, we compose
with llift and calculate – which amounts to substitution of
pattern matching, changing the type of the recursive call,
and elimination of the inner leval.
sequenceS :: (Applicative f, Predict f) =>

Stream (f a) -> f (Stream a)
sequenceS = lfix $ \rec x -> case x of

Nil -> pure Nil
Cons a s ->

Cons
<$> a
<*> predict (rec <*> s)

leval . sequenceS :: Stream (f a) -> f [a]

= substitution of sequenceS and lfix

fmap leval . fix $ \rec x -> case x of
Nil -> pure Nil
Cons a s ->

Cons
<$> a
<*> predict (pure rec <*> s)

= leval through fix, inserting matching llift.
fix $ \rec x -> fmap leval $ case x of

Nil -> pure Nil
Cons a s ->

Cons
<$> a
<*> predict (fmap llift . rec <$> s)

= leval through case, rewriting predict and fmap llift

fix $ \rec x -> case x of
Nil -> pure []
Cons a s ->

(:)
<$> a
<*> leval (rec <$> s)

Finally, we compose with llift and calculate:
leval . sequenceS . llift :: f [a] -> f [a]

= substitution and reduction

fix $ \rec x -> case x of
[] -> pure []
(:) a s ->

(:)
<$> a
<*> rec s

This last term is the standard sequence for lists, and hence
we can conclude that the Traversable instance for lists is
productive on predictable applicatives (when they have the
corresponding algebra necessary to state the property).

9 Predictable Functors and their Traversals
We now revisit the examples from the introduction, showing
how the machinery developed can aid in reasoning about
infinite traversals. As a general theme, there are multiple
guarded recursive types which lie over every standard type,
which may be viewed as “causal refinements” of the under-
lying type. While all predictable types yield productive tra-
versals, not all capture equally granularly the full properties
of the underlying applicative which they are modeling, and
there are examples which show that there is not necessarily
a “single best” refinement for all uses.
As a warm up, the Reader monad is straightforwardly a

predictable functor, and so is productive on infinite traver-
sals.
instance Predictable (Reader r) where
predict x = reader $ \r -> fmap (($ r) . runReader) x

The Writer wmonad introduces a complication – to specify
a Predict instance, the monoid carried by the writer must be
stable:.
instance (Stable w, Monoid w) =>

Predictable (Writer w) where
predict x = writer $

(fst . runWriter <$> x,
wait $ snd . runWriter <$> x)

As an example, when w is a monoid, Delay w has a natu-
ral monoid structure and so we have the fact that in gen-
eral, runWriter . sequence (of type [Writer w a] -> ([a], w))
will yield a non-⊥ second projection only on the occasion
that the input list is finite.
However, for specific choices of w there are more pre-

cise types possible. For instance, there is a straightforward
Haskell instance of monoid for PStream a – the type of possi-
bly productive streams.
instance Semigroup (PStream a) where

PNil <> x = x
PCons x xs <> y = PCons x (xs <> y)
PWait xs <> y = PWait ((<>y) <$> xs)

instance Monoid (PStream a) where
mempty = PNil

The resultant Writer (PStream a) expresses that when the
accumulator of a writer is itself a list, then sequencing an
infinite list can yield a “semi-productive” second component

47

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia Gershom Bazerman

– in particular, if there are𝑚 writes within the first 𝑛 terms
of the list, then sequencing up to the first 𝑛 terms of the list
will yield𝑚 results in the second component.

The State monad presents difficulties similar to those of
Writer, but slightly more complicated. The most naive choice
for a Predict instance would be State (Delay s). But then at
any individual point in a computation, the “real” state would
be guarded by a Delay operator and so appear not necessarily
productively accessible. The property we want to capture
is more subtle – on an infinite list, the second projection of
runState is indeed ⊥, as there is no “final” state. However, at
any individual point in a State computation, the state thus far
is immediately accessible. A more granular type to capture
the productivity of State as well as its algebraic operations
can be achieved by moving to Ahman and Uustalu’s and
algebraic generalization of state into the pair of a reader and
writer monad – which they term the Update monad [1]. The
update monad decouples the information on the left and
right hand side of the function arrow – one still reads the
state, but writes are not directly of the state, but instead of
a monoidal output which acts on the state. This decoupling
solves the difficulties in presenting a state monad that has
good Predictable properties – only the output need be stable,
and not the state itself. This does not yield the State monad
per-se, but does provide a reasonable simulation therein.

We recall briefly the Update monad below, and present the
appropriate Predictable instance.

data Update p s a = Update {runUpdate :: s -> (p, a)}
deriving Functor

class (Monoid p) => ApplyAction p s where
applyAction :: p -> s -> s

instance (ApplyAction p s) => Monad (Update p s) where
Update u >>= f =

Update $ \s ->
let (p, a) = u s

Update t = f a
(p', a') = t (applyAction p s)

in (p <> p', a')

putAction :: p -> Update p s ()
putAction p = Update $ _ -> (p, ())

getState :: Monoid p => Update p s s
getState = Update $ \s -> (mempty, s)

instance Stable p => Predictable (Update p s) where
predict x = Update $

\s -> predict (($ s) . runUpdate <$> x)

With this in hand, we can give apply actions to appropriate
stable structures. For example, the “state-logging” monad of
Piróg and Gibbons [32] can be instantiated as the action of
the heads of partially productive streams.

instance ApplyAction (PStream a) a where
applyAction (PCons x _) _ = x
applyAction _ s = s

By using “head” instead of “last”, unlike the version in
Ahman and Uustalu (example 5 of [1]), this allows infinite
traces. The result of an infinite traverse is a pair, whose first
component is the semi-productive stream of all intermedi-
ate states, and whose second component is the necessarily
productive stream of every traversed result. There is an im-
portant sublety to this argument – the instance given for
PStream is not bisimulation invariant! However, it is invariant
in the lucky circumstance that the only actions which are
applied are those whose first element is not delayed. For-
tunately, the infinite traversals of Stream and ITree we have
considered thus far obey this property, which we term being
prompt, and will consider further in the next section. At this
point, we consider it an open question whether a guarded-
recursive and predictable version of State is possible such
that all its operations can be written in a bisimilar-invariant
fashion, though, from the discussion in the next section, it
seems unlikely.

We now consider a few nonexamples. As one would hope,
because they are sum types, applicative functors such as Maybe
and Either a cannot be given a Predictable instance, which
corresponds to the fact that every element of an infinite
sequence would need to be inspected before the head of
a traversal could be produced – i.e. a Nothing anywhere in
an infinite stream would render the entire traversal to be
Nothing.

A similar situation pertains with lists, which are also con-
structed as sum types, and so not Predictable. In this case it
corresponds to the fact that, for the list (nondeterminism)
monad, a sequence amounts to a cross product – to calculate
if the first element of the first list in the result of a sequencing
is nil requires determining if any element anywhere in the
sequenced list is nil. If sequencing is instead performed with
the ZipList applicative, we arrive at a truncated transposi-
tion, but the same constraint applies. The same constraint
also applies to the lifting of lists to possibly infinite streams.
However, necessarily infinite streams, which are isomorphic
to functions from the naturals, do gain the natural Reader
predictable structure, and further can be observed to not be
constructed using sum types. As such, an infinite sequencing
can be written to transpose an infinite stream of infinite
streams, which amounts to a transposition of an infinite
array. Necessarily infinite streams only admit a “zip”-like
applicative and not a cross-product monad (the unit for the
latter is necessarily a finite list). As an unfortunate, but un-
derstandable, consequence, the techniques developed here
do not permit the generation of all possible strings of bits by
something such as sequence (repeat [True, False]).

48

A Totally Predictable Outcome: An Investigation of Traversals of Infinite Structures Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

Finally, we consider the slightly subtle problem of the
continuation monad. The continuation monad in fact admits
a predictable instance, as given below:
data Cont r a = Cont {runCont :: (a -> r) -> r}

instance Stable r => Predictable (Cont r) where
predict x = Cont $ \z ->

wait $ fmap ($ (z . pure)) (runCont <$> x)

However, there is no general algebra alg :: Cont r a -> a,
and further, even when r and a are the same type, the stability
requirement on r and the action of predict (which always in-
serts a wait over the entire structure) means that the result of
an infinite traversal is necessarily infinitely delayed. So this
gives a situation where an infinite traversal is well-defined
in the guarded-recursive fragment, but this traversal is nev-
ertheless not productive in the guarded-recursive sense or
in the sense of evaluated semantics.

10 Prompt Traversals, Sequencing, and
Bi-infinite Structures

A consequence of the analysis of traversals in Bird, Gibbons,
et al. [6] is that traversals of a datatype correspond to permu-
tations of its elements and in fact there are as many traversals
of a given datatype as there are permutations on its arities.
There is a sense in which this holds true on infinite traver-
sals, but also a sense in which it breaks down. In particular,
it holds somewhat true only as long as all functions in sight
are bisimulation-invariant. However, as soon as any func-
tion (such as the action of the update “simulation” of State
above) breaks bisimulation-invariance (through “detecting”
a Later), then the traversal of a structure making use of such
functions no longer necessarily corresponds to a traversal in
the evaluated semantics. At first, this may seem like a rather
dreary state of affairs – but it has good cause.

Consider, for example, the “backwards” sequence on a list
given as:
backquence :: Applicative f => [f a] -> f [a]
backquence (x:xs) = flip (:) <$> backquence xs <*> x
backquence [] = pure []

This is a valid traversal, and is infinite productive on,
for example, Reader and Writer. On State it will yield ⊥ on
an infinite list. This corresponds to the fact that State with
a get that actually can access the (undelayed) state, is not
in fact predictable. The predictable approximation of State
that via Update simulates “get” through a function that is
not bisimulation-invariant except in the circumstance that a
traversal is prompt – precisely what is violated here.
A prompt traversal is defined, syntactically, as one in

which every predict is associated to the far right of an ap-
plicative chain. Consider the guarded-recursive version of
backquence, as given below:
ibackquence :: (Applicative f, Predictable f)

=> Stream (f a) -> f (Stream a)

ibackquence = lfix $ \rec x -> case x of
Nil -> pure Nil
Cons a s -> flip Cons <$> predict (rec <*> s) <*> a

The predict call occurs in a term to the left of an <*>where
the right hand does not contain a predict call. So this tra-
versal is not prompt. Conceptually, we have secretly been
working with a form of “Later-bias” in our monoidal functors.
Predictable monoidal functors that contain a product with
a stable type use that stable type to “contain” Later within
them. The monoidal nature of applicative functors typically
descends to a monoidal action on that type. The monoids
we have considered thus far have been, as is typical, “left-
strict-biased” – this is to say that given (x <> y), the first
non-later information will be nested in as many laters as
induced by the left-hand side of the append. Because predict
calls force another layer of later-nesting, placing them on the
left side of applicative application “inverts causality,” and in
particular disrupts the ability of non-bisimulation-invariant
functions to access an undelayed first piece of information
from our carrier monoid.
The “bias” of monoids we discuss here is not purely an

operational quirk. It corresponds to an important mathemat-
ical fact – a monoidal operation is finitely associative, but
not necessarily infinitely so. In particular, we can consider
the bias-preserving liftings of the Last and First monoids to
stable structures in the guarded recursive fragment:

data DLast a = DLast {getDLast :: Delay (Maybe a)}

instance Stable (DLast a) where
wait x = DLast (wait . fmap getDLast $ x)

instance Semigroup (DLast a) where
x <> (DLast (Now Nothing)) = x
_ <> (DLast (Now (Just y))) = DLast (Now (Just y))
x <> (DLast (Wait y)) =

wait $ fmap (x <>) (fmap DLast y)

instance Monoid (DLast a) where
mempty = DLast (Now Nothing)

data DFirst a = DFirst {getDFirst :: Delay (Maybe a)}

instance Stable (DFirst a) where
wait x = DFirst (wait . fmap getDFirst $ x)

instance Semigroup (DFirst a) where
(DFirst (Now Nothing)) <> x = x
(DFirst (Now (Just y))) <> _ = DFirst (Now (Just y))
(DFirst (Wait y)) <> x =

wait $ fmap (<> x) (fmap DFirst y)

instance Monoid (DFirst a) where
mempty = DFirst (Now Nothing)

These can be verified to obey the monoid laws – identity,
associativity, etc. However, they are not “infinite-associative”

49

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia Gershom Bazerman

– in particular, for the DFirst monoid, the infinite chain of
multiplications “𝑥0⊗(𝑥1⊗(𝑥2...” is 𝑥0, while the re-associated
chain “...𝑥𝜔−2) ⊗ 𝑥𝜔−1) ⊗ 𝑥𝜔” is ⊥. The dual situation holds
for the DLast monoid. As a result, Writer DFirst yields a non-
⊥writer “log” on a prompt traversal, while Writer DLast does
so on a “co-prompt” traversal.

Further, traversals also naturally arise of “mixed-promptness.”
For example, it is common to represent lists which can be
efficiently appended to on either side as pairs of lists – one
in “forwards” order, and one in “backwards” order. Lifted to
the guarded recursive fragment, we get the following, with
a mixed-promptness traversal.

data Bistream a = Bistream (Stream a) (Stream a)

bicons x (Bistream xs ys) =
Bistream (Cons x (Later xs)) ys

bisnoc y (Bistream xs ys) =
Bistream xs (Cons y (Later ys))

instance ITraversable Bistream where
isequence (Bistream x y) =

Bistream <$> isequence x <*> ibackquence y

This models accurately in the guarded recursive fragment
the situation where traversal with writer of either or both of
First and Last may yield a non-⊥ answer, depending on the
manner in which the Bistream was constructed.

What these examples all show is that in the presence of in-
finite structures, standard set-theoretic equational reasoning
can frequently break down. However, they also show that
reasoning in the guarded-recursive fragment can explain and
account for these failures, offering a fine-grained account
of the varying demand-driven causal relationships between
different portions of structures in a non-strict functional
language.

11 Related Work
While the current work draws inspiration and results from
many sources, we are not aware of anything else that tackles
either the specific problem at hand (infinite traversals) nor
the general approach of providing internal equational rea-
soning about partiality in a partial language. This approach
is most similar to the “fast and loose” work of Danielsson,
Hughes, et al. [14], which also developed (more formal) tech-
niques for extracting equational principles from a total to a
partial setting. Aside from the formality of the setup, the ma-
jor difference is that while they extract from a standard total
setting, we extract from a guarded recursive one. In a way,
this is also the opposite approach to Atkey and McBride [5]
who also investigate techniques for mixing total and guarded
reasoning, but instead treat the guarded recursive fragment
as an “annotated-partial” embedded language which in turn
allows “running” to extract back to a total host language.

Traversals were first introduced in 2008 by McBride and
Paterson [24] and their properties in finite settings have
been explored in work by Bird, Gibbons, Oliveira, Jaskelioff,
O’Connor, and Rypacek among others [6, 15, 20, 21], with rel-
evant results cited in this paper passim. While Gibbons and
Oliveira characterized traversals as “the essence of the itera-
tor pattern” we believe the current work shows how infinite
traversals are in a sense the essence of stream transducers.
We know of no other work which investigates traversals in
non-finite settings.
Use of coinductive types and a “Delay” monad to model

partial computation (as we adopt in this paper) was stud-
ied by Capretta [10]. Varying quotients of this monad by
weak bisimilarity have been constructed by Uustalu and Vel-
tri [35], Chapman, Uustalu, and Veltri [11], and Altenkirch,
Danielsson and Kraus [2]. Bisimulation as a notion of equal-
ity for guarded recursive types has been studied by Møgel-
berg and Veltri [26] and implemented in guarded cubical
Agda by Veltri and Vezzosi [36]. In that work a more stan-
dard construction of bisimulation is shown to coincide with
path-equality on final coalgebras, which can be seen as “eval-
uating” a transition system, which in turn allows proofs of
bisimulation to be conducted through simple equational rea-
soning and guarded recursion. This is similar in spirit to our
approach, though we omit the construction of an equiva-
lence to standard bisimulation entirely, as is is extraneous to
the particular constructions here needed. We further noted
that our bisimulation-via-evaluation approach is conducted
through something resembling logical relations. A more for-
mal relationship between bisimulation and logical relations
has been explored recently in work by Hur, Dreyer et al. [19]
and Hermida, Reddy, et al. [18]. To our knowledge, prior
work has not married bisimilarity with homotopy-theory-
inspired weak equivalences as in done with the gwbeq and
ebeq constructions in the current paper.

Nakano’s Latermodality [27] has been the subject of much
work, particularly with regards to categorical models. While
most of that work is not directly relevant to the current paper,
we believe it is appropriate to enumerate some highlights
for those who wish to explore further. The modality’s con-
nection to Gödel-Löb provability logic and Kripke models
of such was explored further by in Nakano in the next year,
[28], and more recently the connection to intensional rea-
soning has been pursued in work by Kavvos [22, 23] and
Chen and Ko [12].

A significant extension of the modality to “clocked” type
theories with multiple clocks and “running” of computations
of finite depth (for the purposes of modeling coinductive
types) was given by Atkey and McBride [5]. Other related
extensions have been proposed by Birkedal, Grathwohl et al.
[13] and Guatto [17]. While clocks allow running of finite
computations to extract total data, the leval construction in
this paper instead is built in a non-total setting, and allows

50

A Totally Predictable Outcome: An Investigation of Traversals of Infinite Structures Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

running of all computations, with results taking domain
semantics.

A class of categorical models (“synthetic guarded domain
theory”) of the modality in the topos of trees, and more
generally sheaves over complete Heyting algebras was intro-
duced in 2011 by Birkedal, Møgelberg et al. [8]. Since then,
much subsequent work has been done on extending this
approach to models to handle more general type theories,
including clocked theories, dependent theories, and cubical
theories. Such models are an active area of current research,
and notable contributions have been made by (among oth-
ers) Birkedal, Bizjak, Grathwohl, Gratzer, Harper, Møgelberg,
Palombi, and Sterling. [7, 9, 16, 29, 34].
Use of synthetic guarded domain theory as a tool to for-

malize denotational semantics has been particularly explored
in work by Paviotti [25, 30, 31].
Unlike the above-discussed work pertaining to guarded

recursion, our work emphasizes equational reasoning in a
productive fragment of a language with general recursion,
and extraction of principles and results to the full language.

12 Future Work and Conclusion
The current paper has built a sublanguage internal to Haskell
which allows for equational reasoning in a semantics richer
than Set – and in particular, in the presence of potentially
nonterminating computation. In this setting, facts can be
derived about the productivity of various Haskell functions,
and extracted back to the full language. This has allowed
a simple characterization of when an infinite traversal is
productive, as well as fine-grained intensional analysis of
the tricky phenomena of specific infinite traversals. Butmany
questions remain.
The toolkit developed is optimized for lightweight, semi-

formal reasoning. However, it could stand to be formalized
more rigorously, which would require its construction in
an established domain-theoretic setting – either guarded, or
otherwise. Further, the analysis carried out here of infinite
traversals with State remains somewhat unsatisfactory. Per-
haps it is an example where a more fine-grained system such
as the “time-warps” in [17] is necessary for capturing fully
the desired semantics.

Many other type class laws and characterizations inHaskell
besides Traversable are also mainly defined and studied on
the total fragment of the language. It is worth exploring if the
approach of this paper can extend to analyzing other type
class operations in the case of partial or infinite computation
as well.
The typeclass-encoded bisimulation-via-evaluation con-

struction in this paper can be seen as internalizing themethod
of logical relations, with induction on types pairing terms
with witnesses to their semantics. It would be interesting to
generalize and solidify this technique, relating it to existing
literature.

An earlier approach to the questions here made use of the
interleaved effect algebras of [3, 4]. While that yielded un-
satisfactory results, perhaps those algebras could be coupled
in a more principled way with “causality-as-an-effect” by
explicitly considering them in relation to guarded recursion.
A further question to ask is if there is a single structure

that can play the role with infinite traversals that lists dowith
finite traversals. In particular, as described in Bird, Gibbons
et al. [6] finite traversable functors can be decomposed into
a “structure” signature, and a “contents” list. If one swaps
out “list” for something else (say, a stream, or a stream of
lists), is the same possible for infinite traversals? It seems
likely that the “free guarded magma” (i.e. the ITree functor
considered early on) would play such a role.

Then there are more general questions regarding category
theoretic models. The current work has no equivalent of
the classical result relating traversable functors to finitary
polynomial functors. It is not clear precisely what one might
conjecture the analogue of this would be in a guarded re-
cursive setting. Many of the equivalent characterizations
of polynomial functors only hold for endofunctors over Set
[33]. A first step would be determining what can still be
said of these characterizations in the topos of trees. It would
also be necessary to characterize those guarded recursive
datatypes that arise as liftings of recursive datatypes from
a total setting – it seems likely that the condition would
shift from overall finiteness to “pointwise” (or “stepwise”)
finiteness.
As far as general categorical speculation – the guarded

fragment itself appears to be a comonadicmodality in the par-
tial language, and could perhaps be captured as a comonadic
coreflective subcategory. A natural question is if this bears
any special relationship with the Delay monad – and more
generally if a factorization system arises. A tool in this anal-
ysis could be the gwbeq construction, which gives a system
of weak equivalences. Further to this, it would be interesting
to explore what arises if one quotients a guarded-recursive
model by gwbeq, taking the “homotopy category” – this
could be a path to useful models of denotational semantics.

Acknowledgments
This work grew out of some early discussions with Edward
Kmett and Dan Doel that posed the questions that motivate
it. The basic idea took shape after a useful discussion with
Bob Atkey, after which it simmered for some years. Special
thanks are due to James Deikun for many useful ideas, not
least suggesting the name “Predictable”. Callan McGill and
Jeff Polakow both provided comments on the draft. Finally,
we thank the Haskell Symposium reviewers for detailed and
helpful comments and suggestions.

51

Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia Gershom Bazerman

References
[1] Danel Ahman and Tarmo Uustalu. 2014. Update Monads: Cointerpret-

ing Directed Containers. In 19th International Conference on Types for
Proofs and Programs (TYPES 2013) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 26), Ralph Matthes and Aleksy Schubert
(Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 1–23. https://doi.org/10.4230/LIPIcs.TYPES.2013.1

[2] Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus.
2017. Partiality, revisited. In International Conference on Foundations
of Software Science and Computation Structures. Springer, 534–549.
https://doi.org/10.1007/978-3-662-54458-7_31

[3] Robert Atkey, Neil Ghani, Bart Jacobs, and Patricia Johann. 2012. Fibra-
tional Induction Meets Effects. In Foundations of Software Science and
Computational Structures (Lecture Notes in Computer Science, Vol. 7213),
Lars Birkedal (Ed.). Springer, 42–57. https://doi.org/10.1007/978-3-
642-28729-9_3

[4] Robert Atkey and Patricia Johann. 2015. Interleaving data and effects.
Journal of Functional Programming 25 (2015). https://doi.org/10.1017/
S0956796815000209

[5] Robert Atkey and Conor McBride. 2013. Productive coprogramming
with guarded recursion. ACM SIGPLAN Notices 48, 9 (2013), 197–208.
https://doi.org/10.1145/2500365.2500597

[6] Richard Bird, Jeremy Gibbons, Stefan Mehner, Janis Voigtländer, and
Tom Schrijvers. 2013. Understanding idiomatic traversals backwards
and forwards. In Proceedings of the 2013 ACM SIGPLAN symposium on
Haskell. 25–36. https://doi.org/10.1145/2503778.2503781

[7] Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl,
Bas Spitters, and Andrea Vezzosi. 2019. Guarded Cubical Type Theory.
Journal of Automated Reasoning 63, 2 (2019), 211–253. https://doi.org/
10.1007/s10817-018-9471-7

[8] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and
Kristian Støvring. 2012. First steps in synthetic guarded domain theory:
step-indexing in the topos of trees. Logical Methods in Computer Science
Volume 8, Issue 4 (Oct. 2012). https://doi.org/10.2168/LMCS-8(4:1)2012

[9] Aleš Bizjak and Rasmus Ejlers Møgelberg. 2020. Denotational se-
mantics for guarded dependent type theory. Mathematical Structures
in Computer Science 30, 4 (2020), 342–378. https://doi.org/10.1017/
S0960129520000080

[10] Venanzio Capretta. 2005. General recursion via coinductive types.
Logical Methods in Computer Science 1 (2005). https://doi.org/10.2168/
LMCS-1(2:1)2005

[11] James Chapman, Tarmo Uustalu, and Niccolò Veltri. 2019. Quoti-
enting the delay monad by weak bisimilarity. Mathematical Struc-
tures in Computer Science 29, 1 (2019), 67–92. https://doi.org/10.1017/
S0960129517000184

[12] Liang-Ting Chen and Hsiang-Shang Ko. 2022. Realising Intensional
S4 and GL Modalities. In 30th EACSL Annual Conference on Computer
Science Logic (CSL 2022) (Leibniz International Proceedings in Informat-
ics (LIPIcs), Vol. 216), Florin Manea and Alex Simpson (Eds.). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 14:1–
14:17. https://doi.org/10.4230/LIPIcs.CSL.2022.14

[13] Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars
Birkedal. 2017. The Guarded Lambda-Calculus: Programming and
Reasoning with Guarded Recursion for Coinductive Types. Log-
ical Methods in Computer Science Volume 12, Issue 3 (April 2017).
https://doi.org/10.2168/LMCS-12(3:7)2016

[14] Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy
Gibbons. 2006. Fast and loose reasoning is morally correct. In
33rd Symposium on Principles of Programming Languages, POPL 2006,
Charleston, South Carolina, USA, January 11-13, 2006. ACM. https:
//doi.org/10.1145/1111037.1111056

[15] Jeremy Gibbons and Bruno C d S Oliveira. 2009. The essence of the
iterator pattern. Journal of functional programming 19, 3-4 (2009),
377–402. https://doi.org/10.1017/S0956796809007291

[16] Daniel Gratzer and Lars Birkedal. 2022. A Stratified Approach
to Löb Induction. In 7th International Conference on Formal Struc-
tures for Computation and Deduction (FSCD 2022) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Vol. 228), Amy Felty (Ed.).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many. https://doi.org/10.4230/LIPIcs.FSCD.2022.23

[17] Adrien Guatto. 2018. A Generalized Modality for Recursion. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. 482–491.
https://doi.org/10.1145/3209108.3209148

[18] Claudio Hermida, Uday Reddy, Edmund Robinson, and Alessio San-
tamaria. 2022. Bisimulation as a logical relation. Mathematical
Structures in Computer Science (2022), 1–30. https://doi.org/10.1017/
S0960129522000020

[19] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012.
The marriage of bisimulations and Kripke logical relations. ACM
SIGPLAN Notices 47, 1 (2012), 59–72. https://doi.org/10.1145/2103656.
2103666

[20] Mauro Jaskelioff and Russell O’Connor. 2015. A representation theo-
rem for second-order functionals. Journal of functional programming
25 (2015). https://doi.org/10.1017/S0956796815000088

[21] Mauro Jaskelioff and Ondrej Rypacek. 2012. An investigation of the
laws of traversals. InWorkshop onMathematically Structured Functional
Programming, Tallinn, Estonia, 25 March 2012 (EPTCS, Vol. 76). 40–49.
https://doi.org/10.4204/EPTCS.76.5

[22] GA Kavvos. 2017. On the semantics of intensionality. In International
Conference on Foundations of Software Science and Computation Struc-
tures. Springer. https://doi.org/10.1007/978-3-662-54458-7_32

[23] G. A. Kavvos. 2017. Intensionality, Intensional Recursion, and the
Gödel-Löb axiom. abs/1703.01288 (2017). https://doi.org/10.48550/
ARXIV.1703.01288 arXiv:1703.01288

[24] Conor McBride and Ross Paterson. 2008. Applicative programming
with effects. Journal of functional programming 18, 1 (2008), 1–13.
https://doi.org/10.1017/S0956796807006326

[25] Rasmus Ejlers Møgelberg and Marco Paviotti. 2016. Denotational
Semantics of Recursive Types in Synthetic Guarded Domain Theory.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science. Association for Computing Machinery, New York,
NY, USA, 317–326. https://doi.org/10.1145/2933575.2934516

[26] Rasmus Ejlers Møgelberg and Niccolò Veltri. 2019. Bisimulation as
Path Type for Guarded Recursive Types. Proceedings of the ACM on
Programming Languages 3, POPL (Jan. 2019). https://doi.org/10.1145/
3290317

[27] Hiroshi Nakano. 2000. A modality for recursion. In Proceedings Fif-
teenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.
99CB36332). IEEE, 255–266. https://doi.org/10.1109/LICS.2000.855774

[28] Hiroshi Nakano. 2001. Fixed-point logic with the approximation
modality and its Kripke completeness. In International Symposium
on Theoretical Aspects of Computer Software. Springer, 165–182. https:
//doi.org/10.1007/3-540-45500-0_8

[29] Daniele Palombi and Jonathan Sterling. 2022. Classifying topoi in
synthetic guarded domain theory. In Proceedings 38th Conference on
Mathematical Foundations of Programming Semantics, MFPS 2022. https:
//www.jonmsterling.com/papers/palombi-sterling:2022.pdf To appear.

[30] Marco Paviotti. 2016. Denotational semantics in Synthetic Guarded
Domain Theory. Ph.D. Dissertation. IT-Universitetet i København,
Denmark.

[31] Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. 2015. A
Model of PCF in Guarded Type Theory. 319 (2015). https://doi.org/
10.1016/j.entcs.2015.12.020 The 31st Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXXI).

[32] Maciej Piróg and Jeremy Gibbons. 2013. Monads for behaviour.
Electronic Notes in Theoretical Computer Science 298 (2013), 309–324.
https://doi.org/10.1016/j.entcs.2013.09.019

52

https://doi.org/10.4230/LIPIcs.TYPES.2013.1
https://doi.org/10.1007/978-3-662-54458-7_31
https://doi.org/10.1007/978-3-642-28729-9_3
https://doi.org/10.1007/978-3-642-28729-9_3
https://doi.org/10.1017/S0956796815000209
https://doi.org/10.1017/S0956796815000209
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1145/2503778.2503781
https://doi.org/10.1007/s10817-018-9471-7
https://doi.org/10.1007/s10817-018-9471-7
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1017/S0960129520000080
https://doi.org/10.1017/S0960129520000080
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1017/S0960129517000184
https://doi.org/10.1017/S0960129517000184
https://doi.org/10.4230/LIPIcs.CSL.2022.14
https://doi.org/10.2168/LMCS-12(3:7)2016
https://doi.org/10.1145/1111037.1111056
https://doi.org/10.1145/1111037.1111056
https://doi.org/10.1017/S0956796809007291
https://doi.org/10.4230/LIPIcs.FSCD.2022.23
https://doi.org/10.1145/3209108.3209148
https://doi.org/10.1017/S0960129522000020
https://doi.org/10.1017/S0960129522000020
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1017/S0956796815000088
https://doi.org/10.4204/EPTCS.76.5
https://doi.org/10.1007/978-3-662-54458-7_32
https://doi.org/10.48550/ARXIV.1703.01288
https://doi.org/10.48550/ARXIV.1703.01288
https://arxiv.org/abs/1703.01288
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/2933575.2934516
https://doi.org/10.1145/3290317
https://doi.org/10.1145/3290317
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1007/3-540-45500-0_8
https://doi.org/10.1007/3-540-45500-0_8
https://www.jonmsterling.com/papers/palombi-sterling:2022.pdf
https://www.jonmsterling.com/papers/palombi-sterling:2022.pdf
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1016/j.entcs.2013.09.019

A Totally Predictable Outcome: An Investigation of Traversals of Infinite Structures Haskell ’22, September 15–16, 2022, Ljubljana, Slovenia

[33] David I Spivak. 2022. A reference for categorical structures on Poly.
arXiv preprint arXiv:2202.00534 (2022). https://doi.org/10.48550/arXiv.
2202.00534

[34] Jonathan Sterling and Robert Harper. 2018. Guarded Computational
Type Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18).
ACM, New York, NY, USA, 879–888. https://doi.org/10.1145/3209108.
3209153

[35] Tarmo Uustalu and Niccolò Veltri. 2017. The delay monad and restric-
tion categories. In International Colloquium on Theoretical Aspects of
Computing. Springer, 32–50. https://doi.org/10.1007/978-3-319-67729-
3_3

[36] Niccolò Veltri and Andrea Vezzosi. 2020. Formalizing 𝜋-Calculus
in Guarded Cubical Agda. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs. Association
for Computing Machinery, New Orleans, LA, USA, 270–283. https:
//doi.org/10.1145/3372885.3373814

53

https://doi.org/10.48550/arXiv.2202.00534
https://doi.org/10.48550/arXiv.2202.00534
https://doi.org/10.1145/3209108.3209153
https://doi.org/10.1145/3209108.3209153
https://doi.org/10.1007/978-3-319-67729-3_3
https://doi.org/10.1007/978-3-319-67729-3_3
https://doi.org/10.1145/3372885.3373814
https://doi.org/10.1145/3372885.3373814

	Abstract
	1 Introduction
	2 Equipping Haskell with a Formal Later Modality
	3 Predictable Functors and Infinite Traversals
	4 Bisimilarity by Evaluation
	5 Productivity and Stable Values
	6 Examples of Predictable Functors
	7 Bisimilarity by Evaluation for Arrow Types
	8 Predictable Functors Yield Productive Traversals
	9 Predictable Functors and their Traversals
	10 Prompt Traversals, Sequencing, and Bi-infinite Structures
	11 Related Work
	12 Future Work and Conclusion
	Acknowledgments
	References

