
Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Just for Show
A Purely Symbolic Effort in Mathematics

Gregory Wright

Alcatel-Lucent Bell Labs
Crawford Hill Laboratory

Holmdel, New Jersey

27 February 2013

Gregory Wright Just for Show 1/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Outline

1 Symbolic Algebra
A Sandbox for Functional Programming
Apologia

2 The Wheeler Library
Desiderata
A Bit about Tensors
Embedding in Haskell

3 A Demonstration
The Test Case
Performance

4 The Expression Problem
Final interpreters
Coproducts

Gregory Wright Just for Show 2/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Symbolic algebra programs are among the oldest non-numeric
programs, predating the introduction of Lisp in 1958.

Some of the earliest examples:

Symbolic differentiation (folklore, ca. 1952)
SAINT (Symbolic Automatic INTegrator (Slagle, 1961))
SIN (Symbolic INtegrator (Moses, 1967))

Gregory Wright Just for Show 3/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Symbolic algebra programs are among the oldest non-numeric
programs, predating the introduction of Lisp in 1958.

Some of the earliest examples:

Symbolic differentiation (folklore, ca. 1952)
SAINT (Symbolic Automatic INTegrator (Slagle, 1961))
SIN (Symbolic INtegrator (Moses, 1967))

Gregory Wright Just for Show 3/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Symbolic algebra programs are among the oldest non-numeric
programs, predating the introduction of Lisp in 1958.

Some of the earliest examples:

Symbolic differentiation (folklore, ca. 1952)
SAINT (Symbolic Automatic INTegrator (Slagle, 1961))
SIN (Symbolic INtegrator (Moses, 1967))

Gregory Wright Just for Show 3/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Symbolic algebra programs are among the oldest non-numeric
programs, predating the introduction of Lisp in 1958.

Some of the earliest examples:

Symbolic differentiation (folklore, ca. 1952)
SAINT (Symbolic Automatic INTegrator (Slagle, 1961))
SIN (Symbolic INtegrator (Moses, 1967))

Gregory Wright Just for Show 3/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Attempts at general purpose symbolic algebra also began in
the same era: For example,

Schoonschip (1963 – 1967)
MATHLAB (1964)
Macsyma (1968 – 1995)
Scratchpad/Axiom (1971 – present)
Maple (1980 – present)
SMP (1979)
Mathematica (1988 – present)

Gregory Wright Just for Show 4/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Attempts at general purpose symbolic algebra also began in
the same era: For example,

Schoonschip (1963 – 1967)
MATHLAB (1964)
Macsyma (1968 – 1995)
Scratchpad/Axiom (1971 – present)
Maple (1980 – present)
SMP (1979)
Mathematica (1988 – present)

Gregory Wright Just for Show 4/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Attempts at general purpose symbolic algebra also began in
the same era: For example,

Schoonschip (1963 – 1967)
MATHLAB (1964)
Macsyma (1968 – 1995)
Scratchpad/Axiom (1971 – present)
Maple (1980 – present)
SMP (1979)
Mathematica (1988 – present)

Gregory Wright Just for Show 4/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Attempts at general purpose symbolic algebra also began in
the same era: For example,

Schoonschip (1963 – 1967)
MATHLAB (1964)
Macsyma (1968 – 1995)
Scratchpad/Axiom (1971 – present)
Maple (1980 – present)
SMP (1979)
Mathematica (1988 – present)

Gregory Wright Just for Show 4/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Attempts at general purpose symbolic algebra also began in
the same era: For example,

Schoonschip (1963 – 1967)
MATHLAB (1964)
Macsyma (1968 – 1995)
Scratchpad/Axiom (1971 – present)
Maple (1980 – present)
SMP (1979)
Mathematica (1988 – present)

Gregory Wright Just for Show 4/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Attempts at general purpose symbolic algebra also began in
the same era: For example,

Schoonschip (1963 – 1967)
MATHLAB (1964)
Macsyma (1968 – 1995)
Scratchpad/Axiom (1971 – present)
Maple (1980 – present)
SMP (1979)
Mathematica (1988 – present)

Gregory Wright Just for Show 4/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

Attempts at general purpose symbolic algebra also began in
the same era: For example,

Schoonschip (1963 – 1967)
MATHLAB (1964)
Macsyma (1968 – 1995)
Scratchpad/Axiom (1971 – present)
Maple (1980 – present)
SMP (1979)
Mathematica (1988 – present)

Gregory Wright Just for Show 4/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

A Bit of History

The development of Scratchpad/Axiom is important (for us)
because it represents the first attempt to improve a symbolic
algebra system by incorporating types.

Gregory Wright Just for Show 5/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

Symbolic Mathematics v. Computer Algebra

They are different.

Computer algebra has evolved toward construction and
enumeration of algebraic objects. Symbolic mathematics is
usually the interactive manipulation of mathematical formulae in
science and engineering.

Gregory Wright Just for Show 6/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

Why Haskell?

Haskell has libraries that enable it to handle variety of algebraic
objects (the Numeric Prelude and DoCon, the algebraic domain
constructor). But in general it lacks the ability to manipulate
symbolic expressions of these values.

Gregory Wright Just for Show 7/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

Why Haskell?

Also, the programming language interfaces for the existing
mainstream symbolic math programs (Maxima, Maple,
Mathematica) are atrocious.

From a purely aesthetic standpoint, it would be nice to have a
language for manipulating mathematical expressions that is a
nice as Haskell.

Gregory Wright Just for Show 8/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

Minimum Requirements

A symbolic mathematics system has two minimum
requirements:

It needs to automatically perform noncontroversial
simplifications. This helps avoid intermediate expression
bloat, as well as making final answers understandable.
A pattern matching and replacement facility.

Gregory Wright Just for Show 9/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

Minimum Requirements

A symbolic mathematics system has two minimum
requirements:

It needs to automatically perform noncontroversial
simplifications. This helps avoid intermediate expression
bloat, as well as making final answers understandable.
A pattern matching and replacement facility.

Gregory Wright Just for Show 9/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

Minimum Requirements

A symbolic mathematics system has two minimum
requirements:

It needs to automatically perform noncontroversial
simplifications. This helps avoid intermediate expression
bloat, as well as making final answers understandable.
A pattern matching and replacement facility.

Gregory Wright Just for Show 9/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

Bees in My Bonnet

I have a particular interest in calculations in quantum field
theory. For these, I need

Symbolic tensor expressions
The ability to work with noncommuting objects

There are software packages that address some of my
requirements (e.g., Cadabra and the xTensor package for
Mathematica), but they don’t fully solve my problem.

Gregory Wright Just for Show 10/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

Bees in My Bonnet

I have a particular interest in calculations in quantum field
theory. For these, I need

Symbolic tensor expressions
The ability to work with noncommuting objects

There are software packages that address some of my
requirements (e.g., Cadabra and the xTensor package for
Mathematica), but they don’t fully solve my problem.

Gregory Wright Just for Show 10/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

History
Apologia

Bees in My Bonnet

I have a particular interest in calculations in quantum field
theory. For these, I need

Symbolic tensor expressions
The ability to work with noncommuting objects

There are software packages that address some of my
requirements (e.g., Cadabra and the xTensor package for
Mathematica), but they don’t fully solve my problem.

Gregory Wright Just for Show 10/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Why is it called the “Wheeler” library?

John Archibald Wheeler (1911 – 2008)

Gregory Wright Just for Show 11/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Desiderata

My goals are:
Keep close to natural Haskell syntax.
The user is not a compiler...
...which means use the natural operators + and ∗ for
addition and multiplication.
No explicit simplification.
Properly treat noncommuting objects.
Automatic handling of tensor indices.

Gregory Wright Just for Show 12/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Desiderata

My goals are:
Keep close to natural Haskell syntax.
The user is not a compiler...
...which means use the natural operators + and ∗ for
addition and multiplication.
No explicit simplification.
Properly treat noncommuting objects.
Automatic handling of tensor indices.

Gregory Wright Just for Show 12/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Desiderata

My goals are:
Keep close to natural Haskell syntax.
The user is not a compiler...
...which means use the natural operators + and ∗ for
addition and multiplication.
No explicit simplification.
Properly treat noncommuting objects.
Automatic handling of tensor indices.

Gregory Wright Just for Show 12/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Desiderata

My goals are:
Keep close to natural Haskell syntax.
The user is not a compiler...
...which means use the natural operators + and ∗ for
addition and multiplication.
No explicit simplification.
Properly treat noncommuting objects.
Automatic handling of tensor indices.

Gregory Wright Just for Show 12/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Desiderata

My goals are:
Keep close to natural Haskell syntax.
The user is not a compiler...
...which means use the natural operators + and ∗ for
addition and multiplication.
No explicit simplification.
Properly treat noncommuting objects.
Automatic handling of tensor indices.

Gregory Wright Just for Show 12/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Desiderata

My goals are:
Keep close to natural Haskell syntax.
The user is not a compiler...
...which means use the natural operators + and ∗ for
addition and multiplication.
No explicit simplification.
Properly treat noncommuting objects.
Automatic handling of tensor indices.

Gregory Wright Just for Show 12/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Desiderata

My goals are:
Keep close to natural Haskell syntax.
The user is not a compiler...
...which means use the natural operators + and ∗ for
addition and multiplication.
No explicit simplification.
Properly treat noncommuting objects.
Automatic handling of tensor indices.

Gregory Wright Just for Show 12/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Vectors and Tensors

Vectors are objects with some definite properties under
coordinate transformations (e.g., rotations). They are written

vµ

Tensors are objects with a bunch indices, each of which
transforms like a vector

tµνρσ

A special tensor, the metric computes the length of a vector

|v |2 =
3∑

µ,ν=0

gµνvµvν

Gregory Wright Just for Show 13/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Vectors and Tensors

But we never write the summation signs, repeated indices are
implicitly summed over:

|v |2 = gµνvµvν

Repeated indices are also called “dummy indices”. A challenge
is managing dummy indices so we can write things like(

aµ + bµ
)(

cµ + dµ
)

and properly expand or factor them.

Gregory Wright Just for Show 14/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Expressions

-- The Expr data type:
--
data Expr where

Const :: Numeric -> Expr
Applic :: Function -> Expr -> Expr
Symbol :: Symbol -> Expr
Sum :: [Expr] -> Expr
Product :: [Expr] -> Expr
Power :: Expr -> Expr -> Expr
Undefined :: Expr

Gregory Wright Just for Show 15/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Expressions

instance Num Expr where
(+) f g = canonicalize (Sum [f, g])
(-) f g = canonicalize (Sum [f, negate g])
(*) f g = canonicalize (Product [f, g])
negate f = canonicalize (Product [Const (-1), f

])
abs f = canonicalize (Applic Abs f)
signum f = canonicalize (Applic Signum f)
fromInteger n = Const (I n)

Gregory Wright Just for Show 16/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Expressions

instance Ord (Expr) where
compare (Const x) (Const y) = compare x y
compare (Const _) _ = LT

compare (Product _) (Const _) = GT
compare (Product x) (Product y) = compareList x y
compare p@(Product _) y = compare p (Product [y])

compare (Power _ _) (Const _) = GT
compare p@(Power _ _) (Product y) = compareList [p] y
compare p@(Power _ _) p’@(Power _ _) = comparePower p p’
compare p@(Power _ _) y = comparePower p (Power y (Const 1))

compare (Sum _) (Const _) = GT
compare s@(Sum _) p@(Product _) = compare (Product [s]) p
compare s@(Sum _) p@(Power _ _) = compare (Power s (Const 1)) p
compare (Sum x) (Sum y) = compareList x y
compare s@(Sum _) y = compare s (Sum [y])

compare (Applic _ _) (Const _) = GT
compare a@(Applic _ _) p@(Product _) = compare (Product [a]) p
compare a@(Applic _ _) p@(Power _ _) = compare (Power a (Const 1)) p

...

Gregory Wright Just for Show 17/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Canonicalization

canonicalize

simplifyConstant simplifySum simplifyProduct simplifyPower simplifyFunction

simplifyRNE

simplifyTerms

simplifyFactors simplifyIntegerPower

mergeTerms sumCompare

compare groupFactors findCorrespondingFactorsmergeCommutingFactors mergeNonCommutingFactors

Gregory Wright Just for Show 18/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Representing Tensors

A clean syntax for representing tensors is to make the "kernel
symbol" a function, which is applied to the indices. The result of
applying the kernel symbol to the indices is the tensor object
itself:

let
g = minkowskiMetric "g"

in
g alpha sigma * g beta rho * g mu nu -
g alpha nu * g beta rho * g mu sigma -
g alpha sigma * g beta mu * g nu rho +
g alpha beta * g mu sigma * g nu rho +
g alpha rho * g beta sigma * g mu nu -
g alpha rho * g beta mu * g nu sigma -
g alpha nu * g beta sigma * g mu rho +
g alpha beta * g mu rho * g nu sigma

Gregory Wright Just for Show 19/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

A Dirty Trick

-- A simple operator to toggle the variance.
-- It is an ugly hack, but letting "-" toggle the
-- variance is the least ugly option, given that we
-- don’t have unary operators in Haskell.
--
instance Num VarIndex where

negate (Covariant i) = Contravariant i
negate (Contravariant i) = Covariant i
(+) _ _ = error "can’t add slots"
(*) _ _ = error "can’t multiply slots"
abs _ = error "can’t take abs of a slot"
signum _ = error "can’t take signum of a slot"
fromInteger _ = error "can’t convert Integer to slot"

Gregory Wright Just for Show 20/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

A Dirty Trick

This lets us write things like

δµν

as

delta = mkKroneckerDelta minkowskiManifold "delta"
mu = minkowskiIndex_ "mu" "\\mu"
nu = minkowskiIndex_ "nu" "\\nu"

let d = delta mu (-nu)

Gregory Wright Just for Show 21/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Desiderata
A Bit about Tensors
Embedding in Haskell

Test Drive!

Gregory Wright Just for Show 22/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

The question

p

p�

q = p� − p

1

Gregory Wright Just for Show 23/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

What needs to be calculated

Iρσ =

∫ 1

0
dz
∫ 1−z

0
dy
∫

d4k
Nρσ(k , y , z)

(k2 −M(y , z)2 + iε)3

Gregory Wright Just for Show 24/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

The question, in Wheeler

p = momentum "p"
p’ = momentum "p’"
k = momentum "k"

m = scalar "m"
y = scalar "y"
z = scalar "z"

diracSpinor = diracSpinor_ (RepSpace "s")
diracGamma = diracGamma_ (RepSpace "s")
diracSlash = diracSlash_ (RepSpace "s")

inSpinor = diracSpinor "u"
outSpinor = diracConjugate . diracSpinor "u"

triangle = outSpinor p’ * (diracGamma mu * (diracSlash k + y * diracSlash p + z * diracSlash p’ + m) *
diracGamma nu * ((1 - y) * p alpha - z * p’ alpha - k alpha) *
vertexBelinfante (-alpha) (-beta) (-mu) (-nu) (-rho) (-sigma) *
((1 - z) * p’ beta - y * p beta - k beta)) *

inSpinor p

Gregory Wright Just for Show 25/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Expanded

*Main> triangle_e
y * g (-d7) (-rho) * g (-d8) (-d9) * g (-d10) (-sigma) * k d7 * k d10 * p (-d11) *
(diracConjugate u) * gamma d8 * gamma d11 * gamma d9 * u + z * g (-d12) (-rho) * g (-
d13) (-d14) * g (-d15) (-sigma) * k d12 * k d15 * p' (-d16) * (diracConjugate u) * gamma
d13 * gamma d16 * gamma d14 * u + g (-d17) (-rho) * g (-d18) (-d19) * g (-d20) (-sigma)
* k (-d21) * k d17 * k d20 * (diracConjugate u) * gamma d18 * gamma d21 * gamma d19 * u
+ m * g (-d22) (-rho) * g (-d23) (-d24) * g (-d25) (-sigma) * k d22 * k d25 *
(diracConjugate u) * gamma d23 * gamma d24 * u - y * g (-d26) (-rho) * g (-d27) (-d28) *
g (-d29) (-sigma) * k d26 * p (-d30) * p d29 * (diracConjugate u) * gamma d27 * gamma
d30 * gamma d28 * u - z * g (-d31) (-rho) * g (-d32) (-d33) * g (-d34) (-sigma) * k d31
* p d34 * p' (-d35) * (diracConjugate u) * gamma d32 * gamma d35 * gamma d33 * u - g (-
d36) (-rho) * g (-d37) (-d38) * g (-d39) (-sigma) * k (-d40) * k d36 * p d39 *
(diracConjugate u) * gamma d37 * gamma d40 * gamma d38 * u - m * g (-d41) (-rho) * g (-
d42) (-d43) * g (-d44) (-sigma) * k d41 * p d44 * (diracConjugate u) * gamma d42 * gamma
d43 * u + y**2 * g (-d45) (-rho) * g (-d46) (-d47) * g (-d48) (-sigma) * k d45 * p (-
d49) * p d48 * (diracConjugate u) * gamma d46 * gamma d49 * gamma d47 * u + y * z * g (-
d50) (-rho) * g (-d51) (-d52) * g (-d53) (-sigma) * k d50 * p d53 * p' (-d54) *
(diracConjugate u) * gamma d51 * gamma d54 * gamma d52 * u + y * g (-d55) (-rho) * g (-
d56) (-d57) * g (-d58) (-sigma) * k (-d59) * k d55 * p d58 * (diracConjugate u) * gamma
d56 * gamma d59 * gamma d57 * u + m * y * g (-d60) (-rho) * g (-d61) (-d62) * g (-d63)
(-sigma) * k d60 * p d63 * (diracConjugate u) * gamma d61 * gamma d62 * u + y**2 * g (-
d64) (-rho) * g (-d65) (-d66) * g (-d67) (-sigma) * k d67 * p (-d68) * p d64 *
(diracConjugate u) * gamma d65 * gamma d68 * gamma d66 * u - y * g (-d69) (-rho) * g (-
d70) (-sigma) * g (-d71) (-d72) * k d69 * k d71 * p (-d73) * (diracConjugate u) * gamma
d70 * gamma d73 * gamma d72 * u + y * z * g (-d74) (-rho) * g (-d75) (-d76) * g (-d77)
(-sigma) * k d74 * p (-d78) * p' d77 * (diracConjugate u) * gamma d75 * gamma d78 *
gamma d76 * u + z**2 * g (-d79) (-rho) * g (-d80) (-d81) * g (-d82) (-sigma) * k d79 *
p' (-d83) * p' d82 * (diracConjugate u) * gamma d80 * gamma d83 * gamma d81 * u + z * g
(-d84) (-rho) * g (-d85) (-d86) * g (-d87) (-sigma) * k (-d88) * k d84 * p' d87 *
(diracConjugate u) * gamma d85 * gamma d88 * gamma d86 * u + m * z * g (-d89) (-rho) * g

...and on for another 38 pages.

Gregory Wright Just for Show 26/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Processing

-- Apply the Dirac equation wherever we can:
--
diracEquation = (p (-(mkPatternIndex "k")) * diracGamma (mkPatternIndex "k") * inSpinor p, m

* inSpinor p)
diracEquation’ = (p (mkPatternIndex "k") * diracGamma (-(mkPatternIndex "k")) * inSpinor p, m

* inSpinor p)
diracEquation’’ = (p’ (-(mkPatternIndex "k")) * outSpinor p’ * diracGamma (mkPatternIndex "k"), m

* outSpinor p’)
diracEquation’’’ = (p’ (mkPatternIndex "k") * outSpinor p’ * diracGamma (-(mkPatternIndex "k")), m

* outSpinor p’)

diracEquationIdentities = [diracEquation
, diracEquation’
, diracEquation’’
, diracEquation’’’
]

applyDiracEquation = applyUntilStable $ multiMatchAndReplace diracEquationIdentities

-- sp’’ the the scalar part of the numerator, after applying simple
-- gamma matrix identities, then the Dirac equation for on-shell spinors.
--
sp’’ = applyDiracEquation sp’

Gregory Wright Just for Show 27/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

The answer

[−m3 +mq2 +3m3y−mq2y−3m3y2 +m3y3 +3m3z−mq2z−6m3yz+3mq2yz

+ 3m3y2z − mq2y2z − 3m3z2 + 3m3yz2 − mq2yz2 + m3z3] gρσū(p�)u(p) +

[2m − 5my + 4my2 − my3 − 5mz + 8myz

− 3my2z + 4mz2 − 3myz2 − mz3] lσlρū(p�)u(p) +

[−2m + my + 2my2 − my3 + mz − 4myz

+ my2z + 2mz2 + myz2 − mz3] qσqρū(p�)u(p) +

[−m2 + 2m2y − (1/2)q2y − m2y2

+1/2q2y2+2m2z−(1/2)q2z−2m2yz−m2z2+1/2q2z2] (lσū(p�)γρu(p)+lρū(p�)γσu(p))+

[2my−3my2+my3−2mz+my2z+3mz2−myz2−mz3] (lσqρū(p�)u+lρqσū(p�)u(p))+

[−2m2y + 1/2q2y + 2m2y2 − (1/2)q2y2 + 2m2z − (1/2)q2z − 2m2z2 + 1/2q2z2]

(qσū(p�)γρu + qρū(p�)γσu(p)) +

m[−4 + 2y + 2z]gρσū(p�)u(p) +

[4 − 2y − 2z]lρū(p�)γσu(p) + [4 − 2y − 2z] lσū(p�)γρu(p) +

[2y − 2z]qρū(p�)γσu(p) + [2y − 2z]qσū(p�)γρu(p)

1

Gregory Wright Just for Show 28/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Profiling

-- Given an index and a breadcrumb trail, replace the corresponding
-- index in the tree with the supplied index. The argument order
-- is compatible with using replaceIndex in foldr.
--
replaceIndex :: VarIndexInContext -> Expr -> Expr
replaceIndex v e = snd $ ri (index v) (context v) ([], e)

where
ri :: VarIndex -> Breadcrumbs -> (Breadcrumbs, Expr) -> (Breadcrumbs, Expr)
ri i’ b’ (b, t@(Symbol (Tensor _))) = {-# SCC "ri_1" #-} if (b == tail b’)

then (b, repIndex (head b’) i’ t)
else (b, t)

ri i’ b’ (b, Product ps) = {-# SCC "ri_2" #-} (b, Product (zipWith (\n x -> snd (ri i’ b’ ((
Pcxt n) : b, x))) [1..] ps))

ri i’ b’ (b, Sum ts) = {-# SCC "ri_3" #-} (b, Sum (zipWith (\n x -> snd (ri i’ b’ ((
Scxt n) : b, x))) [1..] ts))

ri _ _ u@(_, _) = {-# SCC "ri_4" #-} u

repIndex :: Cxt -> VarIndex -> Expr -> Expr
repIndex (Tcxt n) ind (Symbol (Tensor t)) = {-# SCC "repIndex" #-} Symbol (Tensor $ t {slots =

(replace n ind (slots t))})
where

replace j x l = map (\(k, y) -> if j == k then x else y) $ zip [1..] l
repIndex _ _ _ = error "Can’t happen: error replacing index"

Gregory Wright Just for Show 29/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Profiling

$ cabal clean
cleaning...
$ cabal configure --user \
--enable-library-profiling \
--ghc-option=-auto-all
Resolving dependencies...
Configuring Wheeler-0.3...
$ cabal install --enable-library-profiling \
--ghc-option=-auto-all

Gregory Wright Just for Show 30/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Profiling

$ rm *.hi *.o ScalarTriangle
$ ghc --make -prof -auto-all -O0 -rtsopts -o ScalarTriangle ScalarTriangle.hs
[1 of 4] Compiling Minkowski (Minkowski.hs, Minkowski.o)
[2 of 4] Compiling Gravity (Gravity.hs, Gravity.o)
[3 of 4] Compiling Utility (Utility.hs, Utility.o)
[4 of 4] Compiling Main (ScalarTriangle.hs, ScalarTriangle.o)
Linking ScalarTriangle ...
$./ScalarTriangle +RTS -p
(- m**3 + m * q2 + 3 * m**3 * y - m * q2 * y - 3 * m**3 * y**2 + m**3 * y**3
+ 3 * m**3 * z - m * q2 * z - 6 * m**3 * y * z + 3 * m * q2 * y * z +3 * m**3 *
y**2 * z - m * q2 * y**2 * z - 3 * m**3 * z**2 + 3 * m**3 * y * z**2 - m * q2

* y * z**2 + m**3 * z**3) * g (-rho) (-sigma) * (diracConjugate u) * u ...

Gregory Wright Just for Show 31/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

A Profile

Wed Feb 13 16:53 2013 Time and Allocation Profiling Report (Final)

ScalarTriangle +RTS -p -RTS

total time = 5.80 secs (290 ticks @ 20 ms)
total alloc = 16,173,278,128 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

ri_1 Math.Symbolic.Wheeler.DummyIndices 40.0 0.0
ri_2 Math.Symbolic.Wheeler.DummyIndices 37.2 70.9
replaceIndex Math.Symbolic.Wheeler.DummyIndices 11.4 0.0
ri_3 Math.Symbolic.Wheeler.DummyIndices 4.1 5.7
deleteExpr Math.Symbolic.Wheeler.Replacer 0.7 6.4
repSpaces Math.Symbolic.Wheeler.Expr 0.7 5.7
replaceAt Math.Symbolic.Wheeler.Replacer 0.3 2.1
groupExprs Math.Symbolic.Wheeler.Canonicalize 0.3 1.4
subExprs Math.Symbolic.Wheeler.Matcher2 0.0 1.2
productMatch Math.Symbolic.Wheeler.Matcher2 0.0 1.1

Gregory Wright Just for Show 32/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Another Profile

$./ScalarTriangle +RTS -hc
(- m**3 + m * q2 + 3 * m**3 * y - m * q2 * y - ...
$ hp2ps -c ScalarTriangle.hp > ScalarTriangle.ps

Gregory Wright Just for Show 33/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Another Profile

ScalarTriangle +RTS -hc 110,642,727 bytes x seconds Tue Feb 26 21:55 2013

seconds0.0 5.0 10.0 15.0 20.0 25.0

by
te

s

0k

500k

1,000k

1,500k

2,000k

2,500k

3,000k

3,500k

4,000k

4,500k

5,000k

5,500k

6,000k

OTHER
(2992)replaceAt/replaceIn/r...
(1266)resolveDummies/collec...
(1276)nextDummy/uniqueDummy...
(913)ri_3/replaceIndex/Mat...
(1277)dummyIdentifiers/next...
(1244)replaceIndex/replaceI...
(114)SYSTEM
(1048)mergeFactors/simplify...
(1029)simplifyFactors/simpl...
(1242)toCovariant/mkReplace...
(1275)uniqueDummy/mkReplace...
(2980)deleteExpr/deleteExpr...
(357)expand’/expand/elimin...
(364)mkReplacements/unique...
(1254)repIndex/replaceIndex...
(1238)presentInTwoLists/pai...
(366)resolveDummies/collec...
(1247)ri_3/replaceIndex/rep...
(1249)ri_2/replaceIndex/rep...

Gregory Wright Just for Show 34/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Status

So what’s the status of the library?
It is being actively developed.
Able to tackle real problems in a limited domain.
Still has performance issues.
How to make it easily extensible is still an open question.

Gregory Wright Just for Show 35/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Status

So what’s the status of the library?
It is being actively developed.
Able to tackle real problems in a limited domain.
Still has performance issues.
How to make it easily extensible is still an open question.

Gregory Wright Just for Show 35/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Status

So what’s the status of the library?
It is being actively developed.
Able to tackle real problems in a limited domain.
Still has performance issues.
How to make it easily extensible is still an open question.

Gregory Wright Just for Show 35/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Status

So what’s the status of the library?
It is being actively developed.
Able to tackle real problems in a limited domain.
Still has performance issues.
How to make it easily extensible is still an open question.

Gregory Wright Just for Show 35/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Status

So what’s the status of the library?
It is being actively developed.
Able to tackle real problems in a limited domain.
Still has performance issues.
How to make it easily extensible is still an open question.

Gregory Wright Just for Show 35/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

The Test Case
Performance

Break!

Gregory Wright Just for Show 36/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

The Expression Problem

The Expression Problem is a new name for an old
problem. The goal is to define a datatype by cases,
where one can add new cases to the datatype and
new functions over the datatype, without recompiling
existing code, and while retaining static type safety
(e.g., no casts).

– Philip Wadler, 1998

Gregory Wright Just for Show 37/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

The Expression Problem

The expression problem is important for symbolic mathematics
because in a perfect world, we could write a small library core
and extend it smoothly, adding new mathematical objects. For
example, we may want to extend the operations of addition and
multiplication to vectors and matrices.

Gregory Wright Just for Show 38/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Expressions, again

-- The Expr data type:
--
data Expr where

Const :: Numeric -> Expr
Applic :: Function -> Expr -> Expr
Symbol :: Symbol -> Expr
Sum :: [Expr] -> Expr
Product :: [Expr] -> Expr
Power :: Expr -> Expr -> Expr
Undefined :: Expr

Gregory Wright Just for Show 39/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Symbols

data Symbol = Simple S
| Indexed I
| Tensor T
| DiracSpinor D

To extend the Symbol type requires editing the source and
recompiling. Can we avoid this?

Gregory Wright Just for Show 40/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Three Approaches to the Expression Problem

The universal type
Final interpreter representation
Coproducts, or “Data Types à la Carte”

Gregory Wright Just for Show 41/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Three Approaches to the Expression Problem

The universal type
Final interpreter representation
Coproducts, or “Data Types à la Carte”

Gregory Wright Just for Show 41/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Three Approaches to the Expression Problem

The universal type
Final interpreter representation
Coproducts, or “Data Types à la Carte”

Gregory Wright Just for Show 41/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Three Approaches to the Expression Problem

The universal type
Final interpreter representation
Coproducts, or “Data Types à la Carte”

Gregory Wright Just for Show 41/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Final interpreters

A final interpreter replaces a data constructor with a function.

The idea is the that instead of encoding the syntax of an
expression (the "initial" form) we represent it by application of
semantic functions that carry out the intended operations.

Gregory Wright Just for Show 42/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Final interpreters

Instead of

-- A simplified Expr data type:
--
data Expr where

Literal :: Int -> Expr
Add :: Expr -> Expr -> Expr

Use

class Expr repr where
literal :: Int -> repr
add :: repr -> repr -> repr

Gregory Wright Just for Show 43/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Final interpreters

We need instances that carry out the operations:

instance Expr Int where
literal n = n
add x y = x + y

Gregory Wright Just for Show 44/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Final interpreters

We can have more than one interpretation:

instance Expr String where
literal n = show n
add x y = "(" ++ show x ++ " + " ++ show y ++ ")"

Gregory Wright Just for Show 45/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Final interpreters

The interpreter can be extended:

class MulExpr repr where
mul :: repr -> repr -> repr

With associated instances

instance MulExpr Int where
mul x y = x * y

instance MulExpr String where
mul x y = "(" ++ show x ++ " * " ++ show y ++ ")"

Gregory Wright Just for Show 46/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Final interpreters, Good and Bad News

The good news is that this all works, so far. Another piece of
good news is that this approach preserves type inference: no
additional type annotations are needed.

The bad news is that non-fold style processing is awkward
(though the simplest examples are possible; see Oleg
Kiselyov’s article); it’s not known how to automatically translate
complex operations like the canonicalize function to a final
interpreter.

Gregory Wright Just for Show 47/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Coproducts

Another way to solve the expression problem was proposed by
Wouter Swierstra in his article, Data Types à la Carte. He
keeps the data constructors but uses a coproduct of types
signatures to build an extensible data type.

Gregory Wright Just for Show 48/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Coproducts

An example:

data Expr f = In (f (Expr f))

data Val e = Val Int
data Add e = Add e e

instance Functor Val where
fmap f (Val x) = Val x

instance Functor Add where
fmap f (Add e1 e2) = Add (f e1) (f e2)

Gregory Wright Just for Show 49/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Coproducts

The problem is to make the f in Expr f contain multiple types.

data (f :+: g) e = Inl (f e)
| Inr (g e)

instance (Functor f, Functor g) => Functor (f :+: g) where
fmap f (Inl e1) = Inl (fmap f e1)
fmap f (Inr e2) = Inr (fmap f e2)

foldExpr :: Functor f => (f a -> a) -> Expr f -> a
foldExpr f (In t) = f (fmap (foldExpr f) t)

Gregory Wright Just for Show 50/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Coproducts

Now it is possible to evaluate expressions:

class Functor f => Eval f where
evalAlgebra :: f Int -> Int

instance Eval Val where
evalAlgebra (Val x) = x

instance Eval Add where
evalAlgebra (Add x y) = x + y

instance (Eval f, Eval g) => Eval (f :+: g) where
evalAlgebra (Inl x) = evalAlgebra x
evalAlgebra (Inr y) = evalAlgebra y

eval :: Eval f => Expr f -> Int
eval ex = foldExpr evalAlgebra ex

addExample :: Expr (Val :+: Add)
addExample = In (Inr (Add (In (Inl (Val 338))) (In (Inl (Val 1219)))))

Gregory Wright Just for Show 51/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Coproducts

Smart constructors can avoid some of the pain:

class (Functor sub, Functor sup) => sub :<: sup where
inj :: sub a -> sup a

instance Functor f => f :<: f where
inj = id

instance (Functor f, Functor g) => f :<: (f :+: g) where
inj = Inl

instance (Functor f, Functor g, Functor h, f :<: g) => f :<: (h :+: g) where
inj = Inr . inj

inject :: (g :<: f) => g (Expr f) -> Expr f
inject = In . inj

infix 6 &+
(&+) :: (Add :<: f) => Expr f -> Expr f -> Expr f
(&+) x y = inject (Add x y)

val :: (Val :<: f) => Int -> Expr f
val x = inject (Val x)

Gregory Wright Just for Show 52/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Coproducts

The real payoff: the inj function has a partial inverse.

class (Functor sub, Functor sup) => sub :<: sup where
inj :: sub a -> sup a
prj :: sup a -> Maybe (sub a)

Gregory Wright Just for Show 53/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Coproducts

Now we can tackle something closer to our real problem:

match :: (g :<: f) => Expr f -> Maybe (g (Expr f))
match (In t) = prj t

distrib :: (Add :<: f, Mul :<: f) => Expr f -> Maybe (Expr f)
distrib t = do

Mul a b <- match t
Add c d <- match b
return (a &* c &+ a &* d)

Gregory Wright Just for Show 54/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

The Expression Problem in Symbolic Mathematics

Getting closer, but still not there yet.

Perhaps scaling back our ambitions is in order: could we live
with, say, the latest extensible record techniques – just
introducing new mathematical objects – and give up on
introducing additional operations?

Gregory Wright Just for Show 55/56

Symbolic Algebra
The Wheeler Library

A Demonstration
The Expression Problem

Final interpreters
Coproducts

Further Reading

J. S. Cohen.
Computer Algebra and Symbolic Computation: Elementary Algorithms.
A.K. Peters, 2002.

J. S. Cohen.
Computer Algebra and Symbolic Computation: Mathematical Methods.
A.K. Peters, 2003.

O. Kiselyov.
Typed Tagless Final Interpreters.
Lecture Notes in Computer Science 7470, pp. 130–174, 2012, and
http://okmij.org/ftp/tagless-final/course/index.html

W. Swierstra.
Data Types à la Carte.
Journal of Functional Programming, 18(4):423–436, 2008.

Gregory Wright Just for Show 56/56

	Symbolic Algebra
	A Sandbox for Functional Programming
	Apologia

	The Wheeler Library
	Desiderata
	A Bit about Tensors
	Embedding in Haskell

	A Demonstration
	The Test Case
	Performance

	The Expression Problem
	Final interpreters
	Coproducts

