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Homological Computations 
for Term Rewriting Systems

4 - 6 + 4 = 2

8 - 12 + 6 = 2

6 - 12 + 8 = 2

20 - 30 + 12 = 2

12 - 30 + 20 = 2



(a) Homology (theory) is a Functor

Mathematical Object (like a space)

->

Sequence of Mathematical Objects (like groups)



An Aside on Groups
•A set with a single associative operation (•), a zero 

element (e), and a negation operation such that a • -a = e.

•A generating set with terms as sequences of elements of 
the set, zero, and their negations under the group laws, 
and an identification of some terms (e.g. adq=bc).

•A closed collection of permutations of a set (Cayley).

•A one object category with all morphisms invertible

•Closed paths in a space.



An Aside on Groups
•A one object category with all morphisms invertible

Since categories are considered up to isomorphism, this is 
the group. In all other cases there may be multiple 
descriptions which map, one to one, to one another.

The rank of a group is the size of the smallest generating 
set of the group.



(a) Homology (theory) is a Functor

4 Vertices, 6 Edges, 4 Faces

Or

1 0-blob  (connected component),  
0 1-blobs (2-d components)  
1 2-blob  (3-d components)



Euler’s Formula: V - E + F



Generalization
• Euler Characteristic:  

Alternating sum of vertices, faces, etc.  
Alternating sum of Betti numbers

• Betti numbers:  
Number of “holes” at each dimension  
Rank of the n-th homology group

• Homology group: 
Group constructed from dissecting an object into n-blobs and 
finding the cycles 
Function on adjacent components of a chain complex





Homological Computations 
for Term Rewriting Systems



Monoids
A Set  
equipped with a Binary Operation and Distinguished Element  
such that the operation is associative and the element is identity

Examples:

{T,F} (and, T)

{T,F} (or, F)

{0,1,2…} (+,0)

{1,2,3…} (*,1)



Monoid Presentations
• Motivation: Finite presentation of infinite structure.

• All monoids are quotients of free monoids.

• A Set  
Another Set, consisting of pairs of Words from the first set.

• Examples:  
{a | _ } (natural numbers under addition)  
{a | aa = a} (the boolean lattice)  
{p,q | pq = 1} (the bicyclic monoid)  
{a,b | aa = a, bb = b} (the free band on two elements)

• All presentations give rise to monoids  
Monoids admit multiple presentations



Monoid Presentations <=> String Rewriting Systems

“The Word Problem”  
Given a monoid presentation, find an algorithm to test if 
two elements are equal under the given rewrite rules.

Emil Post (1947): There are monoids for which equality is 
undecidable

Proof: Consider a monoid presented by S, K, I. Then look 
up the “halting problem” on Wikipedia.



Aside: String Rewriting and Computer Science

• Fundamental results in computability

• Instruction sequences in assembly

• Unrestricted grammars

• Combinatory logic

• Operational Transformation  
(edit sequences to documents)

• Distributed and asynchronous systems



A Partial Solution
Knuth/Bendix

Start with a finitely presented monoid.

Create a confluent, normalizing, directed rewrite system 
(i.e. a different presentation).

We do this by systematically rewriting the rewrite rules.

It either succeeds, or fails to terminate.

(Newman’s lemma: if all critical pairs are confluent,  
the system is globally confluent)



Knuth/Bendix Example
{x,y|x^3=y^3=(xy)^3=1}

1. Create directed reductions in e.g. lexiographic order  
     x^3->1, y^3->1, (xy)^3->1

2. Check overlaps to find a critical pair (nonconfluent branch)  
    x^3yxyxy -> yxyxy  
    x^3yxyxy -> x^2

3. Add a new rule to complete the pair  
    yxyxy->x^2

4. Remove rules now made redundant, goto 2.

Result: x^3 -> 1, y^3 -> 1, yxyx -> x^2y^2, y^2x^2 -> xyxy



Next Question
• What if we restrict ourselves to finitely presented monoids 
with decidable word problems. Can we get a 
normalization procedure?

• Consider {s,t| sts = tst}  
No normalization is possible.

• But, create a new presentation where a=st, and we get.  
{s,t,a | ta->as, st->a, sas->aa, saa->aat}

• So we must establish this as a question over all possible 
generators.



Moving Between Presentations

Tietze Transformations:

Add a generator expressed as other generators  
Remove a generator expressible by other generators  
Add a derivable relation  
Remove a redundant relation  



The big a-ha

Add a generator  <-> add a vertex  
Remove a generator <-> delete a vertex  
Add a derivable relation <-> add an edge  
Remove a redundant relation <-> delete an edge



Rewrite Systems as Spaces

abbd

ed

acd

x
?

Confluence requires a topological property: all cycles of a 
certain shape can be “filled” by a 2-cell.  
Find a homological invariant of a monoid that is preserved 
under Tietze transformations.



Chain Complexes Revisited

(source: http://visualizingmath.tumblr.com/post/128146041831/isomorphismes-homology-for-normal-humans-my)

The chain condition: 𝛿^2 = 0. 
Our slogan: “The boundary of the boundary is zero”

http://visualizingmath.tumblr.com/post/128146041831/isomorphismes-homology-for-normal-humans-my


Given a chain complex (A•, d•)

Homology is ker(dn)/im(dn+1)

Suppose: im(dn+1) = ker(dn). Then the homology is trivial. 
(no holes), and we are exact at n.

Exact sequence: chain such that it is exact at every n.

Exact Sequences



Resolutions
If we only care about homotopy (or homology) structure, 
then we want to treat any two spaces with the same 
associated groups as equivalent. A weak equivalence is a 
map between spaces that introduces an isomorphism on 
homotopy structure.

A resolution of a space is a weakly equivalent space subject 
to some condition (depending on the resolution). It gives a 
way of “rearranging” a space to make it more 
understandable.



Homology Resolutions

A plain object (group, module, ring, etc) A, considered as a 
node in a chain complex yields:  
0 -> A -> 0

A resolution of A is a new chain complex that shares 
topological structure. A left resolution, for example, looks 
like: 
… A2 -> A1 -> A -> 0 

As such, a resolution is an exact sequence containing A.



Theorem (Squier 1987)
• We take ℤM as the free ring generated by a monoid M;  

i.e. polynomials in elements of M. Taking M to have 
elements {a,b,c} we get:  
5a+2b-3c, 2a-1b+4b, …

• A free ℤM-module over a set S, written ℤM[S] contains 
formal sums of pairs from M and S; i.e. polynomials in 
pairs from M and S.  
Taking S to have elements {x,y,z} we get:  
2ax + 4cy, ay - az, …



Theorem (Squier 1987)
• Given a presentation (Σ1,Σ2) of a M, there is an exact 

sequence of free ℤM-modules:  
 
 
 
 
 
(the overbar is the element of the monoid corresponding to a given generator)

(images: GM16)



Theorem (Squier 1987)
• Given a finite presentation (Σ1,Σ2) of a M, there is an exact sequence 

of free ℤM-modules:  
 
 
 
 
 
 
(the overbar is the element of the monoid corresponding to a given generator)

• Theorem: This is a partial free resolution of length 2, composed of 
finitely generated, projective modules.

• Hence we say M is of homological type left-FP2

(images: GM16)



Aside: the bracket

[x] is an element of ℤM[Σ1], x̅ an element of ℤM

[α] is an element of [Σ2], but s(α) is an element of Σ1*, not Σ1 !

So, using a “pun” we define [.] of elements of Σ1* : Σ1* -> ℤM[Σ1]

This is an inductive function (in fact, a fold):

[.] 1 = 0

[.] uv = [u] + u̅[v] 

(images: GM16)



Theorem (Squier 1987)
• If (Σ1,Σ2) is confluent, we can generate Σ3, given by the “fillers” of 

the critical branches. Then we extend our sequence like so:  
 
 
 
 

• Theorem: This is a partial free resolution of length 3

• Hence we say M is of homological type left-FP3

(images: GM16)



Theorem (Squier 1987)
• Every monoid is of type left-FP0

• Every finitely generated monoid is of type left-FP1

• Every finitely presented monoid is of type left-FP2

• Every finite convergent  monoid is of type left-FP3



Example (Squier 1987)

(image: Squier 1987)

(Sk is proved to have a decidable word problem for all k)



Whew!



Meanwhile in 1987



Meanwhile in 1987
String rewriting systems present monoids

Term (tree) rewriting systems present algebraic theories.

As with monoids, we view these things presentation first, 
but understanding that different presentations may 
describe the same mathematical object.



Algebraic Theories
An equational theory involves:

Operations with arities (0-ary constants, 1-ary, binary, etc.)  
Universally quantified relations over those operations

Example: groups

generating operations: e : 0, - : 1, • : 2

relations: ∀ x. x • e = x, ∀ x. e • x = x,  
                 ∀ x, y, z. (x • y) • z = x • (y • z) 
                 ∀ x. x • -x = e, ∀ x. -x • x = e

An algebraic theory is an equivalence class of equational theories.



Aside: Term Rewriting and Computer Science

• Typeclasses and laws as theories

• Typeclasses with functional dependencies as a rewrite system

• Syntax trees under equivalence induced by eval

• eval itself  
(though note: lambda binders mean a theory is not algebraic)

• Computer algebra

• Theorem proving



30 years later…
Monoids correspond to string rewriting systems.

Algebraic theories correspond to term rewriting systems.

If homology of monoids lets us prove facts about string 
rewriting presentations. Then… homology of algebraic 
theories lets us prove facts about term rewriting systems?



30 years later…
Groups don’t need five relations. In fact, they only need 
one! (proven in 1952).

x /  
((((x / x) / y) / z) /  
 (((x / x) / x) / z)) 
= y



30 years later…
Groups are one- based

Semi-lattices and distributive lattices are not. Normal 
lattices are.

Boolean algebra? Proven one-based in 2,000, with a single 
axiom of over 40 million symbols.  
(this was later improved)



There is a Homology that determines if a theory is one-based

Idea: each rewrite rule consumes some symbols, and produces 
other symbols.

We can forget the shape of the rule, and just examine the net 
effect.

g(f(x),f(x)) = h(x) —> h = 2f + g

however we need to interpret this in a way that is aware of 
substitutions into contexts.



Aside: Contexts
g

f f

h

g

f j

h

A context in Kn is a term with a distinguished variable and n other variables  
A bicontext in 𝕂(m,n) is a context in n and an arrow from a term in m to a term in n.
Bicontexts induce functions between terms (in fact, rewriting functions).



Contexts make Things Complicated

Monoid —> Ringoid

Free monoid —> Quotient of the free ringoid (by context 
equivalences induced by the relations), aka R.  

(images: MM16)



There is a Homology that determines if a theory is one-based

Theorem: Every convergent presentation of an algebraic 
theory gives rise to a partial resolution of the form:

with P1 the generators, P2 the relations, and P3 the critical 
pairs.

(𝒵 here is the trivial R module)

(images: MM16)



There is a Homology that determines if a theory is one-based

This is an exact sequence, so the homology is trivial.  
Hence we take homology over this tensored by 𝒵op. 
(conceptually, this “cancels” the coefficients in R).

Theorem: The rank of H1 (= ker(𝒵op⊗d0)/im(𝒵op⊗d1)) is a lower 
bound on the number of operations of a theory.

Theorem: The rank of H2 (= ker(𝒵op⊗d1)/im(𝒵op⊗d2)) is a lower 
bound on the number of relations of a theory.

(images: MM16)



The Homotopification of Everything

–Marshall Stone (1938)

“A cardinal principle of modern mathematical 
research may be stated as a maxim: ‘One must 

always topologize’” 



The Homotopification of Everything

–We Do Not Choose Mathematics as OurProfession, It Chooses Us: 
Interview with Yuri Manin (2009)

“But fundamental psychological changes also occur… Instead of sets, 
clouds of discrete elements, we envisage some sorts of vague spaces, 
which can be very severely deformed, mapped one to another, and all the 
while the specific space is not important, but only the space up to 
deformation. If we really want to return to discrete objects, we see 
continuous components, the pieces whose form or even dimension does 
not matter. Earlier, all these spaces were thought of as Cantor sets with 
topology, their maps were Cantor maps, some of them were homotopies 
that should have been factored out, and so on….



The Homotopification of Everything

“I am pretty strongly convinced that there is an ongoing reversal in the 
collective consciousness of mathematicians: the right hemispherical and 
homotopical picture of the world becomes the basic intuition, and if you 
want to get a discrete set, then you pass to the set of connected 
components of a space defined only up to homotopy. That is, the Cantor 
points become continuous components, or attractors, and so on — almost 
from the start. Cantor’s problems of the infinite recede to the background: 
from the very start, our images are so infinite that if you want to make 
something finite out of them, you must divide them by another infinity.”

–We Do Not Choose Mathematics as OurProfession, It Chooses Us: 
Interview with Yuri Manin (2009)



The Tree and the Shadows

(Fontainebleau Forest, Monet, 1865)
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(All otherwise unattributed mathematical images sourced from Wikimedia Commons)
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