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—— Abstract

An important problem in universal nlgebra consists in finding presentations of algebraic theories
by generators and relations, which are as small as possible. Exhibiting lower bounds on the
number of those generators and relations for a given theory is a dillicult task because it a priori
requires considering all possible sets of generators for a theory and no general method exists.
In this article, we explain how homological computations can provide such lower bounds, in a
systematic way, and show how to actually compute those in the case where a presentation of
the theory by a convergent rewriting system is known. We also introduce the notion of coherent
presentation of a theory in order Lo consider finer homotopical invariants. In some aspects, this
work generalizes, 1o term rewriting systems. Squier’s celebrated homological and homotopical
invariants for string rewriting systems.
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Homological Computations
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(a) Homology (theory) 1s a Functor

Mathematical Object (like a space)
=

Sequence of Mathematical Objects (like groups)



An Aside on Groups

e A set with a single associative operation (®), a zero
element (e), and a negation operation such thata ¢ -a =e.

* A generating set with terms as sequences of elements of
the set, zero, and their negations under the group laws,
and an identification of some terms (e.g. adg=bc).

e A closed collection of permutations of a set (Cayley).
e A one object category with all morphisms invertible

* Closed paths in a space.



An Aside on Groups

* A one object category with all morphisms invertible

Since categories are considered up to isomorphism, this is
the group. In all other cases there may be multiple
descriptions which map, one to one, to one another.

The rank of a group is the size of the smallest generating
set of the group.



(a) Homology (theory) 1s a Functor

VH ¢ 4

4 Vertices, 6 Edges, 4 Faces
Or

1 0-blob (connected component),
0 1-blobs (2-d components)
1 2-blob (3-d components)




Fuler’s Formula: V-E + F

Proofs and
Refutations

Imre Lakatos




Generalization

* Euler Characteristic:;
Alternating sum of vertices, faces, etc.
Alternating sum of Betti numbers

e Betti numbers:
Number of “holes” at each dimension
Rank of the n-th homology group

* Homology group:
Group constructed from dissecting an object into n-blobs and
finding the cycles
Function on adjacent components of a chain complex



Formal definili
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Monoids

A Set

equipped with a Binary Operation and Distinguished Element
such that the operation is associative and the element is identity

Examples:
{TF} (and, T)
{T,F} (or, F)
(0,1,2...} (+,0)
(1,2,3...) (*,1)



Monoid Presentations

» Motivation: Finite presentation of infinite structure.

» All monoids are quotients of free monoids.

* A Set
Another Set, consisting of pairs of Words from the first set.

» Examples:
{a | _} (natural numbers under addition)
la | aa = a} (the boolean lattice)
{p,q | pq =1} (the bicyclic monoid)

fab | aa =a, bb =b} (the free band on two elements)

» All presentations give rise to monoids
Monoids admit multiple presentations



Monoid Presentations <=> String Rewriting Systems

“The Word Problem”
Given a monoid presentation, find an algorithm to test if
two elements are equal under the given rewrite rules.

Emil Post (1947): There are monoids for which equality is
undecidable

Proof: Consider a monoid presented by S, K, I. Then look
up the “halting problem” on Wikipedia.



Aside: String Rewriting and Computer Science

* Fundamental results in computability
* Instruction sequences in assembly

* Unrestricted grammars

* Combinatory logic

* Operational Transformation
(edit sequences to documents)

» Distributed and asynchronous systems



A Partial Solution

Knuth/Bendix
Start with a finitely presented monoid.

Create a confluent, normalizing, directed rewrite system
(i.e. a different presentation).

We do this by systematically rewriting the rewrite rules.
[t either succeeds, or fails to terminate.

(Newman’s lemma: if all critical pairs are confluent,
the system is globally confluent)



Knuth/Bendix Example

PE Al 8= v 8= (e A3 T ]

1. Create directed reductions in e.g. lexiographic order
x"\3->1, yN3->1, (xy)"3->1

2. Check overlaps to find a critical pair (nonconfluent branch)

XN3yXyXy -> yXyXy
XNy Xyxy -> X2

3. Add a new rule to complete the pair
YXYXy->X2

4. Remove rules now made redundant, goto 2.

Result: x*3 -> 1, yA3 -> 1, yxyx -> x 2y 2, yA2x N2 -> XyXy



Next Question

What if we restrict ourselves to finitely presented monoids
with decidable word problems. Can we get a
normalization procedure?

Consider {s,t| sts = tst}
No normalization is possible.

But, create a new presentation where a=st, and we get.
Is,t,a | ta->as, st->a, sas->aa, saa->aat}

So we must establish this as a question over all possible
generators.



Moving Between Presentations

Tietze Transformations:

Add a generator expressed as other generators
Remove a generator expressible by other generators
Add a derivable relation

Remove a redundant relation



T'he big a-ha

Add a generator <->add a vertex

Remove a generator <-> delete a vertex

Add a derivable relation <-> add an edge
Remove a redundant relation <-> delete an edge



Rewrite Systems as Spaces

Confluence requires a topological property: all cycles of a
certain shape can be “filled” by a 2-cell.

Find a homological invariant of a monoid that is preserved
under Tietze transformations.



Chain Complexes Revisited
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The chain condition: §°2 = 0.
Our slogan: “The boundary of the boundary is zero”

(source: http:/ / visualizingmath.tumblr.com/ post/ 128146041831 / isomorphismes-homology-for-normal-humans-my)
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Exact Sequences

Given a chain complex (A., d.)

+1 dn dn 1 dy dy dy d_, d_s
coe = A yAp— Ay 1 —Ap 2 — - — Al — Ay— A 1 — A _y—> - -

Homology is ker(dy)/im(dn+1)

Suppose: im(dn+1) = ker(dn). Then the homology is trivial.
(no holes), and we are exact at n.

Exact sequence: chain such that it is exact at every n.



Resolutions

[f we only care about homotopy (or homology) structure,
then we want to treat any two spaces with the same
associated groups as equivalent. A weak equivalence is a
map between spaces that introduces an isomorphism on
homotopy structure.

A resolution of a space is a weakly equivalent space subject
to some condition (depending on the resolution). It gives a
way of “rearranging” a space to make it more
understandable.



Homology Resolutions

A plain object (group, module, ring, etc) A, considered as a
node in a chain complex yields:

0->A->0

A resolution of A is a new chain complex that shares
topological structure. A left resolution, for example, looks
like:

cA>A1>A>0

As such, a resolution is an exact sequence containing A.



Theorem (Squier 1987)

* We take ZM as the free ring generated by a monoid M;
i.e. polynomials in elements of M. Taking M to have
elements {a,b,c} we get:
5a+2b-3c, 2a-1b+4b, ...

* A free ZM-module over a set S, written ZM|[S]| contains
formal sums of pairs from M and S; i.e. polynomials in
pairs from M and S.

Taking S to have elements {x,y,z} we get:
2ax + 4cy, ay - az, ...



Theorem (Squier 1987)

* Given a presentation (X1,X>) of a M, there is an exact
sequence of free ZM-modules:

ZM[5,] -2, M, -4 zM —E sz 0.
M -5 7 7M[z;] 2L Zm TM(5,] 22 ZM[5)]
u— 1 [X] — X —1 [o] — [s(e)] — [t(x)]

(the overbar is the element of the monoid corresponding to a given generator)

(images: GM16)



Theorem (Squier 1987)

* Given a finite presentation (X1,X>) of a M, there is an exact sequence
of free ZM-modules:

ZM[5,] -2 M, -4 zM —E 5z —o.
™ & 7 7M[zy] 4 Zm TM(E,] -2 ZM[5,]
u — | [x] — X —1 o] — [s(e)] — [t(e)]

(the overbar is the element of the monoid corresponding to a given generator)

* Theorem: This is a partial free resolution of length 2, composed of
finitely generated, projective modules.

« Hence we say M is of homological type left-FP;
(images: GM16)



Aside: the bracket

™ & 7 7M[z,] 4L Zm 7M[E,] 22 ZM[5]
u— 1 [X] — X —1 [o] — [s(o)] — [t(x)]

[x] is an element of ZM|[X1], X an element of ZM

] is an element of [X;], but s(a) is an element of X1*, not X7 !
So, using a “pun” we define [.] of elements of X1* : X1* -> ZM|[¥]
This is an inductive function (in fact, a fold):

L=

[.] uv = [u] + u]Vv]

(images: GM16)



Theorem (Squier 1987)

If (X1,X2) is confluent, we can generate X3, given by the “fillers” of
the critical branches. Then we extend our sequence like so:

d
ZM[Z3] 4, ZM[Z;] 42, IM[Z] —— ZM —557 —— 0

d3[y] = [s2(v)] — [t2(¥)]

Theorem: This is a partial free resolution of length 3

Hence we say M is of homological type left-FP3

(images: GM16)



Theorem (Squier 1987)

Every monoid is of type lett-FPy
Every finitely generated monoid is of type left-FI’;
Every finitely presented monoid is of type left-FI>;

Every finite convergent monoid is of type left-FP3



Example (Squier 1987)

Example 4.5. For each non-negative integer k, let S, denote the monoid defined
by the following presentation:

generators: a, b, t, x,, ..., Xe, Yiseonos Vi

relations: at"b— A, (P,)
xa—>atx,, (A)
xt—>tx,, (T,
x;b— bx;, (B;)
xyi—~> A (Q)

(Sk is proved to have a decidable word problem for all k)

Claim. If k=2, then S, is not (FP),.

Claim. If k=2, then S, does not have a finite uniquely terminating presentation.

(image: Squier 1987)
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Meanwhile in 1987

Cohomology of Algebraic Theories
MAMUKA JIBLADZE AND TEIMURAZ PIRASHVILI

Mathematical Institute, Academy of Sciences,
Rukhadze str. 1, Thilisi, Georgia 3806093, USSR

Communicated by Saunders Mac I.are

Received September 27, 1987

1. INTRODUCTION

Cohomology theory for associative algebras over a field is due to
Hochschild [9]. Generalization of this theory for associative algebras over
a commutative ring K posed considerable complications. Scveral definitions
have been proposed. For cxample, in Cartan and Eilenberg’s monograph
[5], the groups Ext%(R, M) are named as candidates for cohomology
of the K-algebra R with coellicients in the R-R-bimodule M; here
R*=R®x R 1s the enveloping algebra of R In MacLane’s book [14]
Hochschild cohomology is defined in the framework of relative homologi-
cal algebra,

Hoch™(R; M) = Extk x(R, M),

where the subscript K signifies that only those extensions which split over
K are considered. Still another definition was proposed by Shukla [22],
whose cohomology is denoted Shukla*(R; M). All these cohomologics arc
connected by natural homomorphisms:

Hoch*(R; M) = Ext%(R:; M) - Shukla*(R; M).



Meanwhile in 1987

String rewriting systems present monoids
Term (tree) rewriting systems present algebraic theories.

As with monoids, we view these things presentation first,
but understanding that different presentations may
describe the same mathematical object.



Algebraic Theories

An equational theory involves:

Operations with arities (0-ary constants, 1-ary, binary, etc.)
Universally quantified relations over those operations

Example: groups
generating operations: e: 0,-:1, ® : 2

relations: Vx.xee=x, V x.e ® x=X,
VX, yz.(xey)ez=xe(ye®z)

Vx.xe-x=¢ VXx.-xex=¢

An algebraic theory is an equivalence class of equational theories.



Aside: Term Rewriting and Computer Science

» Typeclasses and laws as theories
 Typeclasses with functional dependencies as a rewrite system
* Syntax trees under equivalence induced by eval

* eval itselt
(though note: lambda binders mean a theory is not algebraic)

* Computer algebra

e Theorem proving



2() years later...

Monoids correspond to string rewriting systems.
Algebraic theories correspond to term rewriting systems.

I[f homology of monoids lets us prove facts about string
rewriting presentations. Then... homology of algebraic
theories lets us prove facts about term rewriting systems?



2() years later...

Groups don’t need five relations. In fact, they only need
one! (proven in 1952).

X /
(x/x)/y)/]z)]/
((x / x) [ x) /[ 2))
) A



2() years later...

Groups are one- based

Semi-lattices and distributive lattices are not. Normal
lattices are.

Boolean algebra? Proven one-based in 2,000, with a single
axiom of over 40 million symbols.
(this was later improved)



There 1s a Homology that determines if a theory 1s one-based

Idea: each rewrite rule consumes some symbols, and produces
other symbols.

We can forget the shape of the rule, and just examine the net
effect.

g(f(x),f(x))=h(x) —h=2f+ ¢

however we need to interpret this in a way that is aware of
substitutions into contexts.



Aside: Contexts

(EE
f ]

A context in K, is a term with a distinguished variable and n other variables
A bicontext in K(m,n) is a context in n and an arrow from a term in m to a term in n.
Bicontexts induce functions between terms (in fact, rewriting functions).



Contexts make Things Complicated

Monoid —> Ringoid

Free monoid —> Quotient of the free ringoid (by context
equivalences induced by the relations), aka R.

» Example 15. Consider the rewriting system with operations and arities a: 0, 5:0, f : 1,
g:2 and tworules A:a = band B : f(z;) = g(x1,z,). The quoticnt on contexts is
generated by g(U, x1) + g(z1, L)) — f(U).

(images: MM16)



There 1s a Homology that determines if a theory 1s one-based

Theorem: Every convergent presentation of an algebraic
theory gives rise to a partial resolution of the form:

RPy 2= RPy Do RP, P RPy, = Z 0

with P1 the generators, P> the relations, and Ps the critical
pairs.

(Z here is the trivial R module)

(images: MM16)



There 1s a Homology that determines if a theory 1s one-based

RPy 2 =RPy o RP, - P-RP, S22 =0

This is an exact sequence, so the homology is trivial.
Hence we take homology over this tensored by Z°F.
(conceptually, this “cancels” the coefficients in R).

Theorem: The rank of H; (= ker(Z2°°®d;) /im(Z°P®d;)) is a lower
bound on the number of operations of a theory.

Theorem: The rank of H, (= ker(Z2°°®d;)/im(Z°P®d,)) is a lower
bound on the number of relations of a theory.

(images: MM16)



T'he Homotopification of Everything

“A cardinal principle of modern mathematical

research may be stated as a maxim: ‘One must
always topologize””

—Marshall Stone (1938)



T'he Homotopification of Everything

“But fundamental psychological changes also occur... Instead of sets,
clouds of discrete elements, we envisage some sorts of vague spaces,
which can be very severely deformed, mapped one to another, and all the
while the specific space is not important, but only the space up to
deformation. If we really want to return to discrete objects, we see
continuous components, the pieces whose form or even dimension does
not matter. Earlier, all these spaces were thought of as Cantor sets with
topology, their maps were Cantor maps, some of them were homotopies
that should have been factored out, and so on....

—We Do Not Choose Mathematics as OurProfession, It Chooses Us:
Interview with Yuri Manin (2009)



T'he Homotopification of Everything

“I am pretty strongly convinced that there is an ongoing reversal in the
collective consciousness of mathematicians: the right hemispherical and
homotopical picture of the world becomes the basic intuition, and if you
want to get a discrete set, then you pass to the set of connected
components of a space defined only up to homotopy. That is, the Cantor
points become continuous components, or attractors, and so on — almost
from the start. Cantor’s problems of the infinite recede to the background:
from the very start, our images are so infinite that if you want to make
something finite out of them, you must divide them by another infinity.”

—We Do Not Choose Mathematics as OurProfession, It Chooses Us:
Interview with Yuri Manin (2009)



he Tree and the Shadows

(Fontainebleau Forest, Monet, 1865)
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