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Abstract
A simple Haskell encoding of Euler’s method of integration is pre-
sented. From this encoding, a general solver for continuous dif-
ferential equations is developed, by way of lazy splines. Various
refinement strategies are introduced to improve accuracy. The re-
sult is a declarative, compositional library for solving differential
equations.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; G.1.7 [Numeri-
cal Analysis]: Ordinary Differential Equations

Keywords streams, differential equations

1. Introduction
Differential equations, which relate the values of functions to those
of their derivatives, arise in all walks of life and fields of study. Al-
though specific systems of differential equations permit symbolic
solution, in the general case, differential systems can only be solved
through methods of numeric approximation. There is no single best
numeric solver—depending on the class of the problem, various
solvers will vary in efficiency, precision, and convergence. Further-
more, there is no general method to produce guaranteed, rather than
approximate, error bounds. In the words of A.C. Hindmarsh, a pi-
oneer in the field of ordinary differential equation (ODE) solvers:
“For any given ODE solver that you like, there’s always a problem
for which it gives the wrong answer and the answer can be as wrong
as you like; the error in it can be as large as you like.” (Hindmarsh
2005)

As solvers become more complex and powerful, increasing
numbers of parameters become available to modify, with their ef-
fects and interaction varying from problem to problem. For exam-
ple, the introduction of adaptive methods (see section 9) to increase
correctness and efficiency generally means that users are presented
with more, rather than fewer choices, as they must now choose
upper bounds, lower bounds, and tolerances. To quote Hindmarsh
again: “Users have always had trouble choosing the tolerances that
they input to these solvers, and would frequently say, ‘can’t you
write a solver that doesn’t need to ask for that information, and just
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chooses its own tolerance?’ People have tried to do that. But in the
end, to cover the full variety of problems that people solve, you
have to ask people for tolerance information.” (Hindmarsh 2005)

The structure of standard numeric solvers does not readily allow
developers to manage and think about increasing levels of com-
plexity. Though we cannot vanquish the complexities of numerical
solvers, nor tame the proliferation of choices involved in their invo-
cation, we can try to organize the complexity. The goal of this paper
is to expose the choices and approximations that arise in numeric
solving (and their attendant sequencing and relationships) using a
functional, compositional style that developers can manipulate and
reason about.

We begin with a differential equation solver over time se-
ries, based on Euler’s method and well known in functional pro-
gramming folklore. This Euler solver is progressively improved,
while retaining its elegant, declarative character, and applied to in-
creasingly complex problems to solve—survival rates, oscillating
springs, and the growth of flames. Along the way, we move from
the initial time series representation to one based on lazy splines—
sequences of polynomials tagged with duration.

Various refinement strategies are introduced to improve accu-
racy and computational efficiency. These strategies are declarative
and compositional. The result is not a single “solver” but rather
a library, which serves as a toolkit from which a whole family of
solvers may be constructed and experimented with.

Although we make heavy use of Haskell’s non-strict evaluation
and minor use of it’s type class machinery, one could easily adapt
our implementation—at the cost of some elegance—to any func-
tional language. The code presented in this paper is self-contained,
relying only on standard Haskell libraries. It is available on Hack-
age as the package lazysplines.

2. Ducks
Consider a simple problem in survival analysis. We wish to produce
a survival curve for a population of ducks—a function that tells
us the probability that a duck will survive to a given age. The
information we have at hand is a hazard function, which is of
arbitrary shape and derived from direct observation. This hazard
function maps the age of ducks to their probability of death at that
age (and implicitly assumes that a duck has survived up until the
point that it dies, i.e., ducks can only die once).

It is tempting to determine the probability of duck death by
a given age (the complement of the survival curve) simply by
integrating the hazard function. After all, the chance that a duck
dies by a given age is given by the sum total of the chance that it has
died at any age preceding that age. However, as mentioned above,
the hazard function takes into account survival probabilities—i.e.,
it is conditional on the survival of a duck up its time of death.
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Therefore, such an approach would be incorrect, and would in fact
predict that eventually the probability of duck death rises above 100
percent.

Correctly determining the probability of duck death requires
constructing a system of differential equations. First, the survival
curve, duckSurvival(t), is defined in terms of a duck lifetime
distribution function, duckLifetime(t).

duckSurvival(t) = 1− duckLifetime(t)

Next, the lifetime distribution function is defined in terms of its
derivative, an event density function, duckLifetime′(t). This
function represents the instantaneous probability of duck death
at a given age, i.e., not conditional on survival to said age.

duckLifetime(t) =

Z
duckLifetime′(t) dt

Finally, the density function is defined in terms of the the hazard
rate, duckDeathAtAge(t), and survival curve.

duckLifetime′(t) = duckDeathAtAge(t) ∗ duckSurvival(t)

This constitutes a mutually recursive system of differential equa-
tions that presents a classic initial value problem, whose solution,
given an initial value at t = 0, may be numerically approximated
by any number of methods.

If all inputs to this problem are discretized to a regular interval
(say one duck year), the above functions can be directly encoded
in Haskell using time series (i.e., [Double]). In this encoding, lists
are treated as functions whose domain is integers and whose range
is doubles. Values are lifted to constant functions by use of repeat,
pointwise operations such as multiplication and subtraction are
accomplished by the standard Haskell library function zipWith,
and integration is simply a running sum:

integrateList =
snd . mapAccumL (\k x -> (k + x, k + x)) 0

Note that the second projection of mapAccumL’s result is lazily
produced, and thus integrateList lazily produces its result; as
this laziness lies at the heart of our solver, we have included the
definition of mapAccumL in appendix A for the interested reader’s
convenience.

We start our encoding with a time series of observed data:

duckDeathAtAgeList =
-- no deaths before 10 duck years
replicate 10 0 ++
-- 20% chance of death next 10 duck years
replicate 10 0.2 ++
-- increasing chance of death onwards
[0.21,0.22 .. 0.35]

and an initial value for the equation:

-- no chance of death in first duck year
initialLifeList = [0]

We can now directly transcribe the previous definitions into Haskell:

survivalList =
zipWith (-) (repeat 1) duckLifeList

duckLifeList =
initialLifeList ++ integrateList duckLife’List

duckLife’List =
zipWith (*) duckDeathAtAgeList survivalList

Thanks to the laziness of zipWith and integrateList, the def-
inition of survivalList produces a time series which is an ap-
proximate numerical solution to the above formulas.
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Figure 1. Duck survival, by Euler approximation (survivalList).

Note that the above encoding is no different in nature than the
familiar formula for the Fibonacci sequence:

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

Specifically, these are both encodings, using a co-recursive data
structure, of a form of recurrence relation—a function whose value
at a point is defined by its previous values.

The solution presented here is in fact a naive Euler approxima-
tion, with a fixed timestep of one duck year (figure 1). Indeed, when
working with recursive lists, we are limited to the domain of dis-
cretely defined functions, and can hope for no better. We could im-
prove accuracy by reducing the step size, but of course the compu-
tational complexity and round-off error would increase correspond-
ingly, In fact, the true answer would be the limit of such solutions as
the timestep approached zero—obviously impossible to compute.

Having a single fixed timestep affects everything we are work-
ing with. Furthermore, wild instabilities will arise when this tech-
nique is applied to an equation that exhibits variations at an interval
which interferes infelicitously with the timestep. Therefore, rather
than working with lists, we would like to work directly with con-
tinuous valued functions, for both computational efficiency and im-
proved correctness.

3. In Search of Continuity
The first obstacle to treating lists as continuous functions is
simply that, to “evaluate” a function at any given value, we
are indexing into a list with !! which, in our case, is of type
[Double] -> Int -> Double. Clearly, if we can only index at
discrete integral values, then we are working with a discrete func-
tion. We introduce the operator “at”, as a typeclass, so that we
may experiment with various more suitable implementations for
functions than [Double]:

class Sampleable a where
at :: a -> Double -> Double

The time series encoding of functions can be made an instance
of Sampleable as follows:

instance Sampleable [Double] where
at x v = x !! truncate v

This implementation simply “throws out” the non-integral por-
tion of its input, as it can make no use of it. Making time series
sampleable allows us to change their semantics; rather than con-
ceiving of lists as an imprecise representation of smooth functions,
we can take the attitude that time series are in fact a precise repre-
sentation of step functions, as encoded by a series of constant func-
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tions.1 The problem is no longer that we cannot deal with functions
over a continuous domain—it is simply that we can only deal with
a limited class of them.

To increase the range of function representation, the component
pieces, or segments, can be generalized from constant functions
to polynomial functions (themselves represented by [Double], a
list of coefficients of increasing order). The polynomial encoding
yields easily differentiable and integrable piecewise continuous
functions.

type Poly = [Double]

-- Horner’s scheme for polynomial evaluation
instance Sampleable Poly where

at x v = foldr (\c val -> c + v * val) 0 x

instance Sampleable [Poly] where
at x v = poly ‘at‘ frac

where
poly = x !! int
(int,frac) = properFraction v

Code for working with polynomials (as well as power series, their
infinite generalization) has been developed by M. Douglas McIl-
roy (1999). We use a slight variation of his work, presented in ap-
pendix B.

The above encoding is very close to what we are looking for.
However, it is lacking in one particular regard—we must choose a
single domain size, or duration, for all segments (1 in the instance
above); i.e., representing a function whose domain is 0 through
10000 requires 10000 polynomials. Not only is such a represen-
tation clunky, and far from compact, but it suffers from the same
problems mentioned at the end of section 2 resulting from a fixed
segment size (albeit with more information encoded in each seg-
ment). Ideally, a segment should be as large as possible to encode
the information we possess within a desired accuracy, but no larger;
therefore, we should allow segments of variable duration.

4. Working with Splines
Variable duration segments are accomplished simply by packing
each Poly with the duration for which it is valid.

type PolySegment = (Double, Poly)

This representation, a piecewise continuous list of arbitrary-length
polynomials, is a spline—a standard tool of the trade in numeric
analysis.

type Spline = [PolySegment]

duration :: Spline -> Double
duration = sum . map fst

maxDuration = 10000 -- an arbitrary limit

liftS :: Double -> Spline
liftS x = [(maxDuration,[x])]

Sampleable instances are easy to produce for both segments
and splines.

instance Sampleable PolySegment where
at (_,poly) pt = poly ‘at‘ pt

1 We do not, of course, have a precise representation of differential equa-
tions over step functions, as discretization affects both derivation and inte-
gration.

instance Sampleable Spline where
-- assume pt >= 0
at spline pt = go spline pt where
go ((dur,poly):xs) v

| v <= dur = poly ‘at‘ v
| otherwise = go xs (v - dur)

go [] _ = error $
"Sampling spline of out bounds " ++
show spline ++ " at: " ++ show pt

Differentiating these lazy splines is simply done by differenti-
ating each segment, where diff is polynomial differentiation as
defined in appendix B2:

deriveSpline :: Spline -> Spline
deriveSpline = map (second diff)

Integration over lazy splines is a modification of the time series
integration code, accumulating the integral of each segment, where
integ is polynomial integration as defined in appendix B:

integrateSpline :: Spline -> Spline
integrateSpline =

snd . mapAccumL go 0 . map (second integ)
where
go :: Double -> PolySegment -> (Double, PolySegment)
go acc (dur,poly) = (v, seg)

where v = acc + poly ‘at‘ dur
seg = (dur, realToFrac acc + poly)

integrateSpline f produces a new Spline whose value at x
represents the definite integral of f from 0 to x. Thus the following
identity always holds3:

integrateSpline (x ++ y) =
integrateSpline x ++ (v + integrateSpline y)

where
v = integrateSpline x ‘at‘ duration x

Note that both deriveSpline and integrateSpline lazily con-
sume and produce.

A pattern for pointwise operations on splines, inspired by Elliott
(2008), may be abstracted:

inSpline2 :: (Poly -> Poly -> Poly) ->
Spline -> Spline -> Spline

inSpline2 op ((xd,x):xs) ((yd,y):ys)
| xd == yd = (xd, v) : inSpline2 op xs ys
| xd < yd = (xd, v) : inSpline2 op xs (y’:ys)
| otherwise = (yd, v) : inSpline2 op (x’:xs) ys

where
v = x ‘op‘ y
x’ = splitPoly yd (xd,x)
y’ = splitPoly xd (yd,y)
splitPoly d (dur,poly) = (dur - d, shiftBy d poly)

inSpline2 _ _ _ = []

A binary operation over two splines is applied to the first segment
of each. If there is a mismatch between their sizes, a new segment
is created holding the “remainder”, and attached back to the rest of
the spline before iteration continues. Note that the remainder seg-
ment’s polynomial is suitably shifted to reflect the proper starting

2 While a more general version of second is found in Control.Arrow,
for the purposes of this paper, readers may think of it as
second :: (b -> c) -> (a,b) -> (a,c)
3 This is related to the second fundamental theorem of calculus:
if f(x) = g′(x) then

R b
a f(x) dx = g(b)− g(a)

where integrateSpline y loosely corresponds to
R b

a f(x) dx
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point. This shifting is accomplished by polynomial composition, #
(whose definition is in appendix B):

shiftBy :: Double -> Poly -> Poly
shiftBy d poly = poly # [d,1]

In other words, shifting a polynomial function f(x) by a constant
d is accomplished by composing f(x) with the polynomial d + x.4

We may now elegantly define a Num instance for Spline:

instance Num Spline where
fromInteger = liftS . fromInteger
negate = map (second negate)
(+) = inSpline2 (+)
(*) = inSpline2 (*)

A Fractional instance can be defined in a similar fashion,
with the caveat that polynomial division diverges in a number of
common cases. Using common techniques for finding real-valued
zeros of polynomials, one could also implement reasonably effi-
cient abs and signum functions. Cyclic trigonometric functions
can be encoded with a high degree of precision as infinite cycles
of their Taylor expansion over an appropriate range. In fact, as
Karcmarcuk (2001) observed, any function which may be placed
into the framework of automatic differentiation can be transformed
from a lazy tower of derivatives at a point into a power series ex-
pansion of its Taylor approximation about that point. Thus, one
can, almost automatically (fixing the number of terms to truncate
the power series at, and the interval at which to sample the pro-
vided function), derive spline approximations for nearly any nu-
meric function so desired.

5. Ducks, Redux
The hazard function for duck death can now be recast as a Spline
(where we have specified linear interpolation between the sample
points):

duckDeathAtAge = [ (10, [0]),
(10, [0.2]),
(15, [0.2, 0.01]) ]

After defining an initial function for survival probability over an
appropriately short span of time, the original duck death problem
can be encoded directly and continuously:

initialLife = [(1, [0])]

survival = 1 - duckLife

duckLife = initialLife ++ integrateSpline duckLife’

duckLife’ = duckDeathAtAge * survival

In the definition of initialLife, an initial value has been
extruded into an initial segment of non-zero length. This step,
analogous to providing a set of initial values to bootstrap from in
traditional multistep methods, moves us from a precise encoding
of the problem to an approximate encoding of the problem. Such
an approximation is necessary; if the initial segment were to have
a length of zero, any solutions based on it would be equivalent to
let x = x in x—i.e.,⊥. Unfortunately, the choice of a non-zero
length initial segment will create a host of complications for us
down the road. The various ways to address these complications

4 Note that while most operations on polynomials (i.e., finite sequences
of coefficients) would work equally well on power series (i.e., infinite
streams of coefficients), the shiftBy function diverges in the latter case,
and therefore, unfortunately, the code presented here cannot be generalized
to power series.
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Figure 2. Duck survival, by spline approximation (survival).

can be viewed as the core of all numerical methods for solving
systems of differential equations. We will return to this issue in
subsequent sections.

We see that, as with the initial list solution of section 2, by pro-
viding a sufficiently lazy piecewise structure, and by preserving
laziness in our functions, recurrence relations such as the approxi-
mate solution to a differential equation arise naturally. The graph of
survival (figure 2) is a smoother version of that obtained earlier
by the Euler method (figure 1). Direct examination of the result-
ing spline reveals many vanishingly small coefficients at the higher
powers. It would be nice to provide users with the ability to trun-
cate these polynomials at some given point, and hence make a trade
off between precision and speed.

6. Differential Refinement Combinators
Polynomial truncation is the first of several differential refinement
combinators we will introduce. These combinators modify the pre-
cision and computational efficiency of spline solutions to differen-
tial equations; they are composable building blocks of “strategies”
for solving ODEs. As such, we require each differential refinement
combinator, f , to satisfy the following property:

Preservation of Definition.
∀ (s:: Spline) (x:: Double).
∃v. s ‘at‘ x = v implies ∃v′. f s ‘at‘ x = v′

where v, v′ 6= ⊥
In other words, differential refinement combinators preserve the
domain and laziness of splines.

While Splines are piecewise continuous by construction, they
are not necessarily fully continuous, i.e., a Spline’s segments
might not match up. We define continuity for a Spline, s, as
follows:

continuous s iff

∀(di,pi) (di+1,pi+1) ∈ s . pi ‘at‘ di = pi+1 ‘at‘ 0

where s = [(d0,p0), (d1,p1) . . . ]

We further require each differential refinement combinator, f , to
satisfy the following property:

Preservation of Continuity.
∀ (s:: Spline) . continuous s implies continuous (f s)

For a large class of differential refinement combinators—those
which do not alter the durations of individual segments—a higher-
order function (mapSpline) can be produced which guarantees
the above properties are satisfied. Preservation of Definition is
enforced through mapping lazily over each segment of a spline
in turn, preserving individual durations. In the solver we have
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developed, the initial segment is directly provided by the user;
therefore mapSpline leaves this segment unchanged. The function
provided as an argument to mapSpline can depend both on the
duration of the individual segment it operates on, as well as the
sum total duration traversed thus far.

Preservation of Continuity is enforced by matching the initial
value of each resultant segment to the terminal value of the segment
prior. There is one complication involved. For those argument func-
tions which preserve the initial values of the polynomials on which
they operate, this matching can be done prior to their application.
However, for those argument functions which do not preserve the
initial values of the polynomials on which they operate, matching
must be performed subsequent to their application. Furthermore,
care must be taken in this matching not only to properly set their
initial value, but to preserve their terminal value as well—i.e., to
maintain continuity in a minimally destructive fashion. The choice
of when to perform matching is determined by a boolean argument
provided to mapSpline.

mapSpline :: Bool ->
(Double -> Double -> Poly -> Poly) ->
Spline ->
Spline

mapSpline _ _ [] = []
mapSpline matchFirst f (seg:segs) =

-- leave first segment unchanged
seg :
(snd $ mapAccumL go (dur0, seg ‘at‘ dur0) segs)

where
dur0 = fst seg

go (totalDur, lastVal) (dur, poly) =
((totalDur + dur, fnc’ ‘at‘ dur), fnc’)

where
fnc’ = (dur, poly’)

poly’
-- modify translated segment

| matchFirst = f totalDur dur $
match lastVal poly

-- translate modified segment
| otherwise = matchScale lastVal dur $

f totalDur dur poly

-- replace 0-degree coefficient of a Poly
match lastVal (_:xs) = lastVal:xs
match lastVal x = [lastVal]

-- Alter the first point, preserve the point at dur
matchScale v dur poly@(x:xs) = v : map (* scale) xs

where height = poly ‘at‘ (dur - x)
diff = x - v
scale = height / (height - diff)

matchScale v _ x = [v]

With mapSpline in hand, production of a combinator for
polynomial truncation (trimmingTo) is simple, as is rewriting
duckLife’ to use only polynomials of fewer than, e.g., 15 de-
grees.

infixl 1 ‘trimmingTo‘
trimmingTo :: Spline -> Int -> Spline
trimmingTo spline power =

mapSpline True go spline
where
go _ _ s = take power s

survival = 1 - duckLife

duckLife = initialLife ++ integrateSpline duckLife’

duckLife’ = duckDeathAtAge * survival
‘trimmingTo‘ 15

The placement of trimmingTo is somewhat arbitrary and, while
not noticeable in this example, different placements can result in
noticeably different results. In general, we believe that it makes the
most sense to trim at the lowest derivative, as any later placement
would generate additional higher-order coefficients only to discard
them.

The choice of a maximum polynomial length roughly corre-
sponds to the choice of order for a traditional ODE solver. Hence,
while in this case it appears to present a simple time/accuracy trade-
off, the story will not always be so clear. However, for the exam-
ples in this paper, coefficients beyond order fifteen will never have
a noticeably positive impact on the result, and so we will apply
(‘trimmingTo‘ 15) as a matter of course to speed up calcula-
tions without sacrificing noticeable precision.

7. Springs
We appear to be on the right track. But how do we fare with a
more complicated equation? The following system of differential
equations describes the oscillation of a mass at the end of a spring,
such that its acceleration at any given point is a function of its
position.

spring′′(t) = −36 ∗ spring(t)

spring(t) =

ZZ
spring(t) dt2

with the following initial values:

spring(0) = −0.5 spring′(0) = 1

As above, the mathematical equations can be transcribed in a
fairly straightforward manner:

initialSpring = [(0.01, [-0.5, 1, 18])]

spring’’ = -36 * spring
‘trimmingTo‘ 15

spring = initialSpring ++
liftS (initialSpring ‘at‘ 0.01) +
integrateSpline (integrateSpline spring’’)

A few issues are worth particular note. First, as with the equa-
tion in section 2, an appropriate initial segment duration must be
chosen. Too small, and needless work will be performed, but too
large and accuracy will diminish greatly. The length of the ini-
tial segment is chosen here for illustrative purposes—large enough
to illustrate flaws in our approach, but small enough so as not
to produce answers that are thoroughly outlandish. Second: Un-
like the duck equation, the initial segment of the spring equa-
tion is not 0. Thus, its terminal value must be explicitly added to
the second integral of spring’’, as indicated by the identity on
integrateSpline noted in section 4. Finally: Our initial step,
as determined by initialSpring, includes a second degree coeffi-
cient. This coefficient was derived by substituting the initial value
of spring(0) into the equation for spring′′.5

5 In general, for the methods we describe, a more accurate initial seg-
ment will yield more accurate results. Still better accuracy may at times
be achieved by performing additional calculations to yield the initial seg-
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Figure 3. Spring equation, without (above) and with (below) delay
correction.

Analytically, one would expect the above equations to provide a
cosine function. However, the plot of the Haskell solution yields
something quite different (figure 3, top). Clearly, something is
missing from the exposition thus far. What went wrong?

Examining the above code more closely, and keeping in mind
the Sampleable instance for Spline from section 4, we notice
that spring ‘at‘ t is not determined by spring’’ ‘at‘ t but
rather spring’’ ‘at‘ (t - 0.01), where 0.01 is the duration
of initialSpring. Due to that pesky non-zero initial segment
length, the above functions do not solve the intended equation at
all, but rather a closely related delay differential equation. Some
mechanism is necessary to close up the interval introduced by
the initial segment. One method of doing so is to replace every
element of spring’’ ‘at‘ t by a modified element, approx-
imating spring’’ ‘at‘ (t + 0.01) through forward polyno-
mial extrapolation, i.e., producing a differential refinement com-
binator that performs an appropriate amount of shifting on each
polynomial segment.

infixl 1 ‘extrapForward‘
extrapForward :: Spline -> Double -> Spline
extrapForward spline delta =

mapSpline False go spline
where
go _ _ s = shiftBy delta s

We pass the parameter False to mapSpline since shiftBy po-
tentially changes a segment’s starting value; it must be applied to a
segment before translation to preserve continuity.

ment, such as determining the coefficients via a single-step method such as
implicit Euler or Runge-Kutta. These methods, as well as adaptive methods
for determining initial step size, are known fields of study which are beyond
the scope of this paper.

The spring equation may now be written in a manner which
corrects for delay:

spring2’’ = -36 * spring2
‘trimmingTo‘ 15
‘extrapForward‘ 0.01

spring2 = initialSpring ++
liftS (initialSpring ‘at‘ 0.01) +
integrateSpline

(integrateSpline spring2’’)

Indeed, the result is now a periodic cycle between -0.5 and
0.5 (figure 3, bottom). As with trimmingTo, the placement of
extrapForward is somewhat arbitrary. However it makes sense
to conduct forward extrapolation immediately after trimming, as
extrapolation is more stable and efficient when carried out over
lower-order polynomials.

8. Flames
Up to this point, our approach has been an explicit method—
i.e., one in which the state of a system is calculated directly from
its state at prior points in time. In fact, our approach relies on a
tacit “claim” that a polynomial approximation of a segment of the
derivative of a function is a good predictor for the future values
of that segment. This is not always a good assumption. In par-
ticular, a certain class of “stiff” equations will cause any explicit
method to be be quite unstable. Stiffness is an elusive quality, not
immediately apparent in the plot of a function. One way to think of
stiff equations is that they posses components with a mix of time
scales, where there is a rapid damping associated with the shorter
timescale (Hindmarsh 2005).

The following system of equations, modeling the growth of a
flame, is a good example of ”stiffness”:

flame′(t) = flame(t)2 ∗ (1− flame(t))

flame(t) =

Z
flame′(t) dt

flame(0) = 0.01

This function starts out with a gradual slope, which begins to
increase very rapidly at around 95, and then levels off sharply to
a constant value of 1 at around 110 (Moler 2003).

The above equations can be transcribed into Haskell in a famil-
iar fashion. As in section 7, an additional initial coefficient has been
computed by substituting the initial value into the system of equa-
tions. We choose here an initial segment of length one, as it is large
enough that differences in the quality of various solutions will be
evident, but small enough that the solutions will not be absurdly
poor.

initialFlame = [(1, [0.01, 9.9e-5])]

flame’ = flame^2 * (1 - flame)
‘trimmingTo‘ 15
‘extrapForward‘ 1

flame = initialFlame ++
(liftS (initialFlame ‘at‘ 1) +
integrateSpline flame’)

As we feared, this code does not produce a good answer and begins
to diverge into incoherence at some point around 109—i.e., at
the “stiff” portion, where even a small change in flame yields
a significant change in flame’; for example, flame ‘at‘ 110
evaluates to 4.71e8.
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The divergence is an artifact caused by higher-order polynomi-
als. Higher order polynomials, under forward extrapolation, will
exaggerate effects that occur in too rapid a timescale. In the stiff re-
gion, i.e., that area characterized by a relatively rapid damping, this
exaggeration rapidly multiplies and the solution diverges. Things
can be brought back under control by limiting the size of polyno-
mials to a low order— i.e., using (‘trimmingTo‘ 2) instead of
(‘trimmingTo‘ 15). Although this solution does not diverge, it
is nonetheless very poor. One can also obtain a solution that does
not diverge by greatly reducing the size of the initial step, but only
at a significant computational cost. Clearly, we will need to expand
the stock of our techniques in order to get a decent result in a rea-
sonable span of time.

In fact, when dealing with stiff problems, it is necessary to use
implicit methods—i.e., methods which involve (numerically) solv-
ing an equation dependent on the state of the system at prior points
in time and the current point in time.6 Explicit forward polynomial
approximation now becomes the first half of a predictor-corrector
pair. At each step, we add an implicit corrector component, cal-
culated by the minimization of some constraint. To minimize con-
straints, we will need a root solver. The root solver used in this
paper (for which code is provided in appendix C) has the following
type signature:

findValue :: Double ->
(a -> Double) ->
(Double -> a) ->
a

Given a tolerance, a fitness function on some value and a method of
generating such a value from a Double, findValue finds a value
suitable to within the specified tolerance.

The choice of a corrector component can yield a variety of
properties. For this paper, we have chosen to use a function that
assumes that the initial value and “shape” of each polynomial
component are correct, but that it may be scaled wrongly. This
additional component may be viewed as a translated and scaled
version of the original.

scaleRest :: Poly -> Double -> Poly
scaleRest (x:xs) c = x : map (* c) xs

scaleRest has the convenient property that, as c approaches zero,
the result becomes increasingly flat. Thus, it is particularly suited
to taming the wild swings brought on by forward extrapolation in
regions of stiffness.

Now we introduce a SplinePredicate—a fitness function, to
be applied to each polynomial component of a spline. These pred-
icates are allowed to depend upon the start time of the component
(i.e., the sum of the durations of all preceding segments) as well as
its duration. Although time varying predicates are not used in this
paper, it is not hard to imagine examples requiring such generality.

type SplinePredicate =
Double -> Double -> Poly -> Double

With these tools in hand in hand, we can produce a new differ-
ential refinement combinator that given a spline, a tolerance and a
predicate, iteratively corrects each segment of the spline to mini-
mize the predicate.

infixl 1 ‘satisfying‘
satisfying :: Spline ->

(Double, SplinePredicate) ->
Spline

6 This presents a suggestive symmetry: Explicit solvers generate the fix-
point of a recurrence relation. Implicit solvers also involve, at each step, a
numerical solution to the fixpoint of a derived relation.

satisfying spline (tol, p) =
mapSpline True go spline

where
go t d fnc = findValue tol (p t d) $

scaleRest fnc

Adding this new constraint to the previous function is easy. We
begin with an appropriate SplinePredicate7:

flamePred :: SplinePredicate
flamePred t d f = v’ - v^2 * (1 - v)

where v = f ‘at‘ d
v’ = diff f ‘at‘ d

This predicate, minimizing defect at the end of each segment, is
trivially algebraically derived from the initial equation. The mech-
anism provided is very general, and one might choose to minimize
any derived equation—e.g., solving for defect not only at the end-
point of a segment, but across its whole span.

As with initial step size, the tolerance used here has been chosen
for illustrative purposes.

flame2’ = flame2^2 * (1 - flame2)
‘trimmingTo‘ 15
‘extrapForward‘ 1

flame2 = initialFlame ++
liftS (initialFlame ‘at‘ 1) +
integrateSpline flame2’

‘satisfying‘ (0.00001, flamePred)

Indeed this now produces a reasonable answer (figure 4, top).
Note that the introduction of a SplinePredicate means that

the formula must be written twice—once at the value level, as a
direct recurrence, and once as a predicate, in the form of an expres-
sion to minimize. Furthermore, the placement of satisfying is
fixed by the predicate, which should be passed a piece of flame2
rather than a piece of flame2’. 8

The same approach—calculating a derived equation that, if the
solution were exact, would be zero, can be used to generate a graph
of local defect across the whole of a spline. The following function,
given any solution to the flame equation, yields a spline which is its
pointwise local defect9:

flameDefect f = deriveSpline f - (f ^ 2) * (1 - f)

This gives a convenient measure of the accuracy of solutions (fig-
ure 4, bottom).

9. Flames, Reframed
While the solver as developed thus far is accurate, it is nonetheless
not very adaptive. A step size, once fixed by the initial segment, re-
mains so for the whole of a solution. Similarly, a maximum order,
once fixed by trimmingTo, remains so for the whole of a solution.

7 Note that we have not used the equivalent and more natural definition
diff f - f^2 * (1-f)) ‘at‘ d for flamePred because polynomial
multiplication is very expensive.
8 Due to the way we have written the various combinators, a predicate
must be written in terms of a function and its derivatives. This limits us to
adding implicit constraints only to, depending how it is viewed, the lowest
derivative or highest integral of any given function. Alternate, slightly
more complicated, versions of these functions are possible, which pass
to predicates not only a single spline segment, but an infinite tower of its
integrals.
9 We use the term “defect” rather than “error” since it does not measure the
distance from the actual solution to a system of differential equations, but
rather the extent, at each point in time, to which the approximate solution
fails to satisfy the system.
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Figure 4. flame2 (above) and flameDefect flame2 (below), in
the region of stiffness.

Some parts of a function may be very smooth and stable, possessing
only components which change relatively slowly, while other parts
of a function may operate on a very different timescale. Clearly,
there is something to be gained by tightening the step only when
needed, and lengthening the stride when permissible. Similarly, it
would be far better to use polynomials of higher degree when they
produce better approximations, but to discard higher order polyno-
mial coefficients when they degrade the accuracy of calculations.
To accomplish this, a new set of differential refinement combina-
tors must be introduced.

The first combinator, splitWhen, recursively splits each seg-
ment of a spline in half when it fails to satisfy a given predicate
within some tolerance, and as limited by some minimum duration.

infixl 1 ‘splitWhen‘
splitWhen :: Spline ->

(Double, Double, SplinePredicate) ->
Spline

splitWhen spline (tol, minsize, p) =
go 0 spline

where
go _ [] = []
go t (f@(dur,poly):fs)

| doSplit = go t (f’ : f’’ : fs)
| otherwise = f : go t’ fs

where

-- split if predicate is not satisfied
-- and duration is not below minsize
doSplit = dur > minsize &&

abs (p t dur poly) > tol

-- two segments, each with half
-- the duration of the original
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Figure 5. flame3 (above) and flameDefect flame3 (below), in
the region of stiffness.

dur’ = dur / 2
f’ = (dur’, poly)
f’’ = (dur’, shiftBy dur’ poly)

t’ = t + dur

This splitting function can then be applied within the recur-
sive “knot” of a differential solver. Here it is placed before the
satisfying clause, so that the solution may immediately be im-
proved. splitWhen on its own has no effect on the numeric results
of a solution. Thus, if the order were reversed, there would be no
improvement in the accuracy of a result until the following step,
after the smaller segments had passed through the recursive loop.

flame3’ = flame3^2 * (1 - flame3)
‘trimmingTo‘ 15
‘extrapForward‘ 1

flame3 = initialFlame ++
liftS (initialFlame ‘at‘ 1) +
integrateSpline flame3’

‘splitWhen‘ (0.00001, 0.125, flamePred)
‘satisfying‘ (0.00001, flamePred)

Indeed, this solution with splitting noticeably improves accuracy
(figure 5).10

splitWhen determines when time should be sacrificed for ac-
curacy. Now we provide a combinator which serves as its inverse.
extendWhen determines when accuracy should be sacrificed for
time. Segments are extended until a predicate exceeds some given
tolerance, as limited by some maximum duration. This extension

10 The tolerances for various differential refinement combinators may ob-
viously be set individually. However, for the sake of simplicity, in flame3
and all following equations, we take all tolerances to be uniform.
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is accomplished recursively doubling segment length. Once a seg-
ment is extended, that additional duration must be chopped from
subsequent segments, until the process is ready to begin again.

infixl 1 ‘extendWhen‘
extendWhen :: Spline ->

(Double, Double, SplinePredicate) ->
Spline

extendWhen spline (tol,maxlen,p) =
go (spline ‘at‘ 0, 0) 0 spline

where
go _ _ [] = []
go (lastVal, time) chop ((oldDur,oldPoly):fs)

-- This segment has been subsumed
-- by previous extensions,
-- disregard it.

| dur <= 0 =
go (lastVal, time) (negate dur) fs

-- Attempt to extend this segment
| otherwise =

(dur’, poly’) :
go (lastVal’, time’) chop’ fs

where

-- The segment as chopped
-- to reflect prior extensions
poly = shiftBy chop oldPoly
dur = oldDur - chop

chkPred d =
(abs $ p time d poly) < tol

-- greatest permissible duration
-- that satisfies the predicate
dur’ = lastDef dur .

takeWhile chkPred .
-- list of possible durations
takeWhile (<= maxlen) $
iterate (* 2) dur

chop’ = dur’ - dur
time’ = time + dur’
lastVal’ = poly ‘at‘ dur’
poly’ = matchScale lastVal dur’ poly

lastDef def [] = def
lastDef _ [x] = x
lastDef def (x : xs) = lastDef def xs

Again, the introduction of this differential refinement combina-
tor is compositional. It is placed here following satisfying, as
it makes sense to try to extend results only after they have been
adjusted.

flame4’ = flame4^2 * (1 - flame4)
‘trimmingTo‘ 15
‘extrapForward‘ 1

flame4 = initialFlame ++
liftS (initialFlame ‘at‘ 1) +
integrateSpline flame4’

‘splitWhen‘ (0.00001, 0.125, flamePred)
‘satisfying‘ (0.00001, flamePred)
‘extendWhen‘ (0.00001, 8, flamePred)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

104.0 105.0 106.0 107.0 108.0 109.0 110.0

-7.5e-2

-5.0e-2

-2.5e-2

0.0

2.5e-2

5.0e-2

7.5e-2

104.0 105.0 106.0 107.0 108.0 109.0 110.0

Figure 6. flame4 (above) and flameDefect flame4 (below), in
the region of stiffness.

This solution, as one would expect, is noticeably worse (figure 6),
but also somewhat faster—taking 5.66 seconds in ghci to evaluate
to 200, as compared to 8.03 seconds for flame3.11

10. Adaptive Order
Having introduced an adaptive step size, we now turn our attention
to the order of polynomials. It is bothersome that the order of poly-
nomial chosen is at once so important to the result, and so arbitrary.
Too large and the equation is unstable. Too small, and accuracy falls
drastically. Rather than the naive trimmingTo function, we intro-
duce a combinator that takes a a SplinePredicate, and attempts
to choose an order intelligently, only keeping terms that improve
the fitness of the result. At least two terms are always preserved, as
satisfying requires at least one term beyond the initial value in
order to modulate the result.

infixl 1 ‘trimSmart‘
trimSmart :: Spline ->

SplinePredicate ->
Spline

trimSmart spline p =
mapSpline True go spline

where
go t dur poly =

headDef poly .
map fst .
dropWhile chkPred $
-- pair adjacent candidate
-- polynomials
zip polys (drop 1 polys)

where

11 All measurements done on an AMD Opteron 8300.
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Figure 7. flame5 (above) and flameDefect flame5 (below), in
the region of stiffness.

-- possible trimmed polynomials
polys = drop 2 . inits $ poly

chkPred (x,x’) = p t dur x >
p t dur x’

headDef def [] = def
headDef _ (x:_) = x

Adding this new modification is again compositional. We place
trimSmart so as to discard undesirable coefficients as early as
possible.

flame5’ = flame5^2 * (1 - flame5)
‘extrapForward‘ 1

flame5 = initialFlame ++
liftS (initialFlame ‘at‘ 1) +
integrateSpline flame5’

‘trimSmart‘ flamePred
‘splitWhen‘ (0.00001, 0.125, flamePred)
‘satisfying‘ (0.00001, flamePred)
‘extendWhen‘ (0.00001, 8, flamePred)

This provides a significant boost in speed and precision. In fact,
the preceding code, which yields an excellent estimation (figure 7),
executes (as interpreted in ghci) to 200 in 0.71 seconds.

11. Related Work
The method presented here is distinct from any the authors have en-
countered, but has many similarities to the Adams method (Brown
et al. 1989). Like the Adams method, it is a multistep method that
uses forward polynomial extrapolation. At each step, an Adams
method of order n constructs an interpolating polynomial based on

the values of the previous n steps. The method here, on the other
hand, creates a polynomial via a direct translation of the system of
differential equations into Haskell functions over splines. In both
cases, segments are determined by estimations at previous points.
However, in the method described here, the combination of these
estimations is not necessarily linear.

Lazy differential techniques over time series have been dis-
cussed previously by Karcmarcuk (1999), and over power series
by M. Douglas McIlroy (1999, 2001). Work on functional reac-
tivity and streams is of course very related as well (Elliott 2008;
Rutten 2003). Much of this material, including its relation to finite
calculus, has been expanded on in a recent Functional Pearl (Hinze
2008). Our innovation is simply in recognizing the power we gain
by combining these preexisting techniques and applying them to
the field of approximate differential solving. Also of particular in-
terest is Pavlovic and Escardo (1998), which explains that “when
applying standard methods for solving differential equations, we
are actually using coinduction without even realizing it.” Unsurpris-
ingly, we have seen that approximating differentials is coinductive
as well.

12. Discussion
Proceeding by simple steps, we have produced a reasonably per-
formant, implicit/explicit, variable step, variable order differential
solver, built with a combination of numeric and algebraic tech-
niques. In this presentation, we have sometimes sacrificed effi-
ciency in the service of clarity. Certain aspects, particularly in deal-
ing with stiff equations, have significant room for improvement. In
any case, we do not claim to have invented a better general solver
for differential equations.

Like any in the zoo of differential solvers, there are some cases
where the sort of solver we have presented is appropriate, and
many where a better choice is possible. Traditional methods are
optimized for efficient matrix calculation, while ours is forced to
perform increasingly expensive polynomial calculations. Further-
more, when we work with traditional methods, we have a great deal
of knowledge about their characteristics—their stability, their local
error, and so forth.

However, the method we describe does possess a few particu-
larly useful properties. Its result is not a single number at a point,
but a declarative description of the entirety of a function. Partial
results are memoized in the data structure as we proceed. Delay
differential equations, normally a more complicated addition to dif-
ferential solvers, fall naturally out of our technique.12

Furthermore our representation, like many functional program-
ming techniques, is good to think with, and excellent to explore
with. Traditional multistep methods include “magic numbers” of
various sorts (generally coefficients), derived from a separate ana-
lytical step.13 The method presented here does not have such num-
bers. Nor is it hemmed in to any particular algorithm. Rather, we
have built a combinator library, with which it is possible to manip-
ulate and modify differential expressions and approaches as first-
class values within Haskell. When working with this library users
are, in a sense, not applying any sort of numerical approximation
algorithm as such, but simply providing a declarative statement
regarding the function that they seek to model, and the appropri-
ate strategy for their purposes. It would be worthwhile to explore
what this expressivity yields in terms of formalization—for exam-

12 At least, when they are of a constant delay. We believe that application
of this technique to variable delay equations would be both possible and
interesting.
13 These numbers are distinct from tolerances, which are parameters to
algorithms, not intrinsic parts of algorithms themselves.
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ple, coinductive proof techniques could be used to express bounds
on error.

13. Future Work
The code presented here has not been optimized for speed. We be-
lieve that both stream fusion and speculative parallelism could be
applied to great effect. While we have provided some basic strate-
gies for refining numeric integration, we have not fully studied
their interactions with one another. Furthermore, other strategies
can doubtless be introduced.

Minor variations in what has been described can produce a set of
related techniques. Rather than doubles, polynomials may be con-
structed out of higher precision numeric types. More interestingly,
the move from lists to splines may be viewed as a shift from an
algebra over a flat basis function to an algebra over the universe
of polynomials. This basis set could be augmented by exponen-
tial functions (yielding tension splines), or replaced by trigonomet-
ric functions. We believe that an efficient wavelet representation is
possible as well. If an arbitrary monoid ring is taken as the source
of the basis, multivariate expressions can be introduced—and, ac-
cordingly, solutions to partial differential equations. If the data rep-
resentation is moved from a list into a tree-like structure, it is pos-
sible to lazily traverse functions in multiple dimensions, although
subject to certain unfortunate constraints regarding order.

The type of duration may likewise be altered. Through the
introduction of an explicit representation for infinitesimals, this
work transfers from a traditional numeric space into that of smooth
infinitesimal analysis— convenient for modeling which includes
both continuous and discrete components.

Finally the underlying representation can be packed with a dic-
tionary of (a -> Double, Double -> b). In the course of this
paper, we have moved from something only slightly resembling
a function (a list), to something which, under the morphism ‘at‘,
resembles a function much more closely. With the packed dictio-
nary, splines can be used to represent a more general class of func-
tions; indeed, they can now be made an instance of the standard
typeclasses Applicative and Arrow. As such, this may provide a
foundation for one form of efficient functional reactivity.

A. Appendix: mapAccumL
From the Data.List documentation in the basic libraries...
The ’mapAccumL’ function behaves like a combination of ’map’
and ’foldl’; it applies a function to each element of a list, passing
an accumulating parameter from left to right, and returning a final
value of this accumulator together with the new list.

mapAccumL :: (acc -> x -> (acc, y)) ->
acc ->
[x] ->
(acc, [y])

mapAccumL _ s [] = (s, [])
mapAccumL f s (x:xs) = (s’’,y:ys)

where (s’, y ) = f s x
(s’’,ys) = mapAccumL f s’ xs

B. Appendix: Code For Polynomials
Adopted from M. Douglas McIlroy (2007)

infixr 9 #
instance Num Poly where

fromInteger c = [fromInteger c]

negate fs = map negate fs

(f:ft) + (g:gt) = f+g : ft+gt
fs + [] = fs
[] + gs = gs

(f:ft) * gs@(g:gt) =
dropZeros $ f*g : ft*gs + [f]*gt

_ * _ = []

instance Fractional Poly where
fromRational c = [fromRational c]

(0:ft) / gs@(0:gt) = ft/gt
(0:ft) / gs@(g:gt) = 0 : ft/gs
(f:ft) / gs@(g:gt) = f/g : (ft-[f/g]*gt)/gs
[] / (0:gt) = []/gt
[] / (g:gt) = []
_ / _ = error "improper polynomial division"

-- Polynomial composition
(f:ft) # gs@(0:gt) = f : gt*(ft#gs)
(f:ft) # gs@(g:gt) = [f] + gs*(ft#gs)
[] # _ = []
(f:_) # [] = [f]

-- Polynomial integration
integ fs = dropZeros $

0 : zipWith (/) fs (countFrom 1)

-- Polynomial differentiation
diff (_:ft) = zipWith (*) ft (countFrom 1)
diff _ = [0]

countFrom n = n : countFrom (n+1)

dropZeros = foldr f [] where
f elem acc | elem == 0 && null acc = acc

| otherwise = elem:acc

C. Appendix: Code for Root Finding
Root solving functions, using Newton’s method with numeric dif-
ferentiation.

We divide our root solver implementation into two pieces. First
we generate a stream of candidate answers which (hopefully) con-
verge to an actual root 14:

newton :: Double -> (Double -> Double) -> [Double]
newton initial f = iterate go initial where

go x = x - (approx / df)
where approx = f x

df = (f (x + delta) - approx) / delta
delta = 0.001

Next we have a function to pick the first acceptable candidate:

pickValue :: Double -> (a -> Double) -> [a] -> a
pickValue tol f =

-- give up after 1000 tries
foldr go err . take 1000

where
go x x’ = if abs (f x) <= tol then x else x’
err = error "can’t converge"

14 For the sake of simplicity, we fix the differentiation step size at 0.001. A
serious approach would likely incorporate some form of automatic differ-
entiation.
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Finally, a function, using our root solver, that given a fitness func-
tion on some value and a method of generating such a value from a
Double, finds a value suitable to within some tolerance.

findValue :: Double ->
(a -> Double) ->
(Double -> a) ->
a

findValue tol p fnc =
-- we use an initial guess of 1
pickValue tol p $ map fnc $ newton 1 (p . fnc)
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