
What is the meaning of a Haskell program?
Dustin Mulcahey

Every programming language has syntax and semantics. The
specification of syntax is typically given using BNF notation.

For example, here is the beginning of the Haskell language spec:

program -> {lexeme | whitespace }

lexeme -> qvarid | qconid | qvarsym | qconsym

| literal | special | reservedop | reservedid

literal -> integer | float | char | string

special -> (|) | , | ; | [|] | ‘| { | }

whitespace -> whitestuff {whitestuff}

Every programming language has syntax and semantics. The
specification of syntax is typically given using BNF notation.
For example, here is the beginning of the Haskell language spec:

program -> {lexeme | whitespace }

lexeme -> qvarid | qconid | qvarsym | qconsym

| literal | special | reservedop | reservedid

literal -> integer | float | char | string

special -> (|) | , | ; | [|] | ‘| { | }

whitespace -> whitestuff {whitestuff}

Syntax dictates what strings of text are valid programs. That is,
given a syntax specification and a string, one can say whether or
not that string is a valid program according to the syntax.

One payoff of specifying your programming language’s syntax is
that there are programs that take syntax specifications and output
programs that check whether or not other strings are programs
(according to the input syntax). For example: yacc (yet another
compiler compiler).

As a bonus, these programs typically output an abstract syntax
tree (stuffed into an appropriate datatype) that you can then
traverse to either interpret the program or output compiled code.

Syntax dictates what strings of text are valid programs. That is,
given a syntax specification and a string, one can say whether or
not that string is a valid program according to the syntax.

One payoff of specifying your programming language’s syntax is
that there are programs that take syntax specifications and output
programs that check whether or not other strings are programs
(according to the input syntax). For example: yacc (yet another
compiler compiler).

As a bonus, these programs typically output an abstract syntax
tree (stuffed into an appropriate datatype) that you can then
traverse to either interpret the program or output compiled code.

Syntax dictates what strings of text are valid programs. That is,
given a syntax specification and a string, one can say whether or
not that string is a valid program according to the syntax.

One payoff of specifying your programming language’s syntax is
that there are programs that take syntax specifications and output
programs that check whether or not other strings are programs
(according to the input syntax). For example: yacc (yet another
compiler compiler).

As a bonus, these programs typically output an abstract syntax
tree (stuffed into an appropriate datatype) that you can then
traverse to either interpret the program or output compiled code.

The semantics of a programming language specify the meaning of
individual programs.

For example, what is the meaning of the following snippet?

f :: Integer -> Integer

f x = x * x

The semantics of a programming language specify the meaning of
individual programs.
For example, what is the meaning of the following snippet?

f :: Integer -> Integer

f x = x * x

Someone might say that the program on the previous slide means
this:

Dustins-MacBook-Air:haskelltalk dustin$ ghci

GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Prelude> :load square.hs

[1 of 1] Compiling Main (square.hs, interpreted)

Ok, modules loaded: Main.

*Main> f 4

16

That is, one could claim that the meaning of the program is
precisely what the interpreter does with it. That is, the interpreter
gave us a f that we could happily apply to things marked as type
Integer

To get yet another meaning of the program from three slides back,
I could spruce it up a bit:

import System.Environment

f :: Integer -> Integer

f x = x * x

main = getArgs >>= print . f . read . head

GHC tells me that the meaning of this is:

0000000 cf fa ed fe 07 00 00 01 03 00 00 80 02 00 00 00

0000010 11 00 00 00 c8 07 00 00 85 00 20 00 00 00 00 00

0000020 19 00 00 00 48 00 00 00 5f 5f 50 41 47 45 5a 45

0000030 52 4f 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000040 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00

0000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000060 00 00 00 00 00 00 00 00 19 00 00 00 78 02 00 00

0000070 5f 5f 54 45 58 54 00 00 00 00 00 00 00 00 00 00

0000080 00 00 00 00 01 00 00 00 00 20 0f 00 00 00 00 00

0000090 00 00 00 00 00 00 00 00 00 20 0f 00 00 00 00 00

00000a0 07 00 00 00 05 00 00 00 07 00 00 00 00 00 00 00

00000b0 5f 5f 74 65 78 74 00 00 00 00 00 00 00 00 00 00

00000c0 5f 5f 54 45 58 54 00 00 00 00 00 00 00 00 00 00

... and on and on

Well, to be more pedantic, it was GHC version 7.4.2 that told me
this - when I ran it on the same computer that is projecting these
slides right now. I think it might tell me something else on a
different machine. Well, a different GHC would... um...

The previous meanings of my little program are all in terms of
operational semantics. In operational semantics, we say that the
meaning of a program is the output of an interpreter. To define
the semantics, one must define the interpreter.

Now, it wouldn’t be very good for the meaning of Haskell
programs to be equal to the compiler output on a specific
machine! In actual operational semantics, an abstract machine is
mathematically defined. So you still cannot escape from math.

The previous meanings of my little program are all in terms of
operational semantics. In operational semantics, we say that the
meaning of a program is the output of an interpreter. To define
the semantics, one must define the interpreter.

Now, it wouldn’t be very good for the meaning of Haskell
programs to be equal to the compiler output on a specific
machine! In actual operational semantics, an abstract machine is
mathematically defined. So you still cannot escape from math.

As a wannabe mathematician, I would say that the program from
many slides ago means this:

f : Z→ Z
f (x) = x2

where Z denotes the set of all integers. Pick your favorite
mathematical foundation to construct this (more on this later).

To sound even more sophisticated, we could say that the above
mathematical object is the denotation of my little program.

As a wannabe mathematician, I would say that the program from
many slides ago means this:

f : Z→ Z
f (x) = x2

where Z denotes the set of all integers. Pick your favorite
mathematical foundation to construct this (more on this later).

To sound even more sophisticated, we could say that the above
mathematical object is the denotation of my little program.

In denotational semantics, we assign a mathematical object to
each valid program. In the case of my little program, it was the
function that takes an integer and squares it.

As a big of notational pedantry, we like to distinguish the f from
my code and the f from math. As such, we’ll write

JfK : Z→ Z
JfK(x) = x2

instead.

That is, we surround any piece of code by double brackets to refer
to its denotation.

As a big of notational pedantry, we like to distinguish the f from
my code and the f from math. As such, we’ll write

JfK : Z→ Z
JfK(x) = x2

instead.

That is, we surround any piece of code by double brackets to refer
to its denotation.

Why did we just do all of that?

Well, now we can do things like this:

Theorem
f will never output 2 for any input.

Proof.
Suppose that f outputs 2 for an input x . Then JfK(x) = 2 for
some x ∈ Z. Hence, there exists an x ∈ Z such that x2 = 2, which
is a contradiction.

Why did we just do all of that?

Well, now we can do things like this:

Theorem
f will never output 2 for any input.

Proof.
Suppose that f outputs 2 for an input x . Then JfK(x) = 2 for
some x ∈ Z. Hence, there exists an x ∈ Z such that x2 = 2, which
is a contradiction.

Why did we just do all of that?

Well, now we can do things like this:

Theorem
f will never output 2 for any input.

Proof.
Suppose that f outputs 2 for an input x . Then JfK(x) = 2 for
some x ∈ Z. Hence, there exists an x ∈ Z such that x2 = 2, which
is a contradiction.

Okay, that wasn’t that exciting. The following paper is much more
interesting:

HALO: Haskell to Logic through Denotational Semantics,
Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen, and Dan
Rosen, POPL 2013.

Okay, that wasn’t that exciting. The following paper is much more
interesting:

HALO: Haskell to Logic through Denotational Semantics,
Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen, and Dan
Rosen, POPL 2013.

Idea:

c_head :: Statement

c_head = head ::: CF :&: Pred (not . null) --> CF

Here, c_head is a contract that says that head takes things that
are crash-free and non-empty to things that are crash-free.

Quick overview:

I Translate the Haskell program to a first order logic (FOL)
theory. Translate contracts to a FOL statement.

I Invoke theorem checker to verify that the FOL statement is a
logical conclusion of the FOL theory.

I Denotational semantics is employed to prove that if the
translation of a contract follows from the translation of a
program, then the actual program satisfies the actual contract.

Quick overview:

I Translate the Haskell program to a first order logic (FOL)
theory. Translate contracts to a FOL statement.

I Invoke theorem checker to verify that the FOL statement is a
logical conclusion of the FOL theory.

I Denotational semantics is employed to prove that if the
translation of a contract follows from the translation of a
program, then the actual program satisfies the actual contract.

Quick overview:

I Translate the Haskell program to a first order logic (FOL)
theory. Translate contracts to a FOL statement.

I Invoke theorem checker to verify that the FOL statement is a
logical conclusion of the FOL theory.

I Denotational semantics is employed to prove that if the
translation of a contract follows from the translation of a
program, then the actual program satisfies the actual contract.

Now that we’ve had an introduction to denotational semantics and
its uses, let’s get into it in more detail.

Attempt 1: Provied a recursively defined map of Haskell programs
to mathematical objects. Here, types go to sets and functions
between types go to functions between sets. This is the notion
that a type is the set of all things of that type.

For example,

f :: Integer -> Integer

f x = x^2

would map to

JfK : Z→ Z
JfK(x) = x2

since (∗) maps to the actual function ∗ : Z× Z→ Z

We can simplify our thinking by expressing programs
morphologically. For instance, I can think of the above program as
the composite:

diag x = (x,x)

f = (uncurry (*)) . diag

which, as a category theorist, I would write as:

Integer
diag // Integer× Integer

(∗) // Integer
which would then get mapped to this by our denotational
semantics:

JIntegerK
JdiagK // JIntegerK× JIntegerK

J(*)K // JIntegerK
and then, by an appropriate definition, this would be equal to:

Z ∆ // Z× Z ∗ // Z

We can simplify our thinking by expressing programs
morphologically. For instance, I can think of the above program as
the composite:

diag x = (x,x)

f = (uncurry (*)) . diag

which, as a category theorist, I would write as:

Integer
diag // Integer× Integer

(∗) // Integer

which would then get mapped to this by our denotational
semantics:

JIntegerK
JdiagK // JIntegerK× JIntegerK

J(*)K // JIntegerK
and then, by an appropriate definition, this would be equal to:

Z ∆ // Z× Z ∗ // Z

We can simplify our thinking by expressing programs
morphologically. For instance, I can think of the above program as
the composite:

diag x = (x,x)

f = (uncurry (*)) . diag

which, as a category theorist, I would write as:

Integer
diag // Integer× Integer

(∗) // Integer
which would then get mapped to this by our denotational
semantics:

JIntegerK
JdiagK // JIntegerK× JIntegerK

J(*)K // JIntegerK

and then, by an appropriate definition, this would be equal to:

Z ∆ // Z× Z ∗ // Z

We can simplify our thinking by expressing programs
morphologically. For instance, I can think of the above program as
the composite:

diag x = (x,x)

f = (uncurry (*)) . diag

which, as a category theorist, I would write as:

Integer
diag // Integer× Integer

(∗) // Integer
which would then get mapped to this by our denotational
semantics:

JIntegerK
JdiagK // JIntegerK× JIntegerK

J(*)K // JIntegerK
and then, by an appropriate definition, this would be equal to:

Z ∆ // Z× Z ∗ // Z

Here, we see that our intended J-K maps Haskell types to sets and
Haskell programs to functions between sets.

Additionally, we want J-K to respect composites (which I sort of
did implicitely on the last slide). More explicitely:

JfK = J(uncurry (*)) . diagK
= J(uncurry (*))K ◦ JdiagK
= ∗ ◦∆

Here, we see that our intended J-K maps Haskell types to sets and
Haskell programs to functions between sets.

Additionally, we want J-K to respect composites (which I sort of
did implicitely on the last slide). More explicitely:

JfK = J(uncurry (*)) . diagK
= J(uncurry (*))K ◦ JdiagK
= ∗ ◦∆

This means that J-K ought to be a functor. What’s that again?

Definition
A category C consists of objects and morphisms. Given morphisms
f : X → Y and g : Y → Z , there is a composite g ◦ f : X → Z .
This is an associative operation. Additionally, every object X has
an identity map 1X : X → X which acts as a unit for composition,
that is, f ◦ 1X = f = 1Y ◦ f .

This means that J-K ought to be a functor. What’s that again?

Definition
A category C consists of objects and morphisms. Given morphisms
f : X → Y and g : Y → Z , there is a composite g ◦ f : X → Z .
This is an associative operation. Additionally, every object X has
an identity map 1X : X → X which acts as a unit for composition,
that is, f ◦ 1X = f = 1Y ◦ f .

Instead of giving tons of examples, I want to focus on two that are
relevant to the discussion (with another to come soon!).

I Hask - the Haskell category whose objects are Haskell types
and morphisms are Haskell programs.

I Set - the category of sets, whose objects are sets and
morphisms are functions between sets.

Instead of giving tons of examples, I want to focus on two that are
relevant to the discussion (with another to come soon!).

I Hask - the Haskell category whose objects are Haskell types
and morphisms are Haskell programs.

I Set - the category of sets, whose objects are sets and
morphisms are functions between sets.

Definition
A functor F : C → D is a mapping of the objects of C to the
objects of D and the morphisms of C to the morphisms of D.
Additionally, F takes identities to identities and composites to
composites, that is, F (1X) = 1F (X) and F (g ◦ f) = F (g) ◦ F (f).

You already know several examples of functors, but I am guessing
that most of them are endofunctors on the category Hask.
(endofunctor is a fancy word for a functor that goes from a
category to itself.)

Examples:

I [] : Hask→ Hask which takes a type a to [a] and a
morphism f :: a -> b to fmap f :: [a] -> [b]

I Maybe : Hask→ Hask

I IO : Hask→ Hask

You already know several examples of functors, but I am guessing
that most of them are endofunctors on the category Hask.
(endofunctor is a fancy word for a functor that goes from a
category to itself.)

Examples:

I [] : Hask→ Hask which takes a type a to [a] and a
morphism f :: a -> b to fmap f :: [a] -> [b]

I Maybe : Hask→ Hask

I IO : Hask→ Hask

You already know several examples of functors, but I am guessing
that most of them are endofunctors on the category Hask.
(endofunctor is a fancy word for a functor that goes from a
category to itself.)

Examples:

I [] : Hask→ Hask which takes a type a to [a] and a
morphism f :: a -> b to fmap f :: [a] -> [b]

I Maybe : Hask→ Hask

I IO : Hask→ Hask

You already know several examples of functors, but I am guessing
that most of them are endofunctors on the category Hask.
(endofunctor is a fancy word for a functor that goes from a
category to itself.)

Examples:

I [] : Hask→ Hask which takes a type a to [a] and a
morphism f :: a -> b to fmap f :: [a] -> [b]

I Maybe : Hask→ Hask

I IO : Hask→ Hask

However, my dear audience, it is time to leave Hask! It seems that
denotational semantics is a functor:

J-K : Hask→ Set

This is all well and good for my little program that squares
integers. However, what about this monstrosity?

g :: Integer -> Integer

g x = (g x) + 1

The problem:

I We would like JIntegerK = Z
I That would imply that JgK : Z→ Z
I However, there is no actual function Z→ Z that satisfies the

definition of g! If there was, then that would imply that 0 = 1
in Z (this only happens in Z/1, which is a pretty stupid group)

This is all well and good for my little program that squares
integers. However, what about this monstrosity?

g :: Integer -> Integer

g x = (g x) + 1

The problem:

I We would like JIntegerK = Z

I That would imply that JgK : Z→ Z
I However, there is no actual function Z→ Z that satisfies the

definition of g! If there was, then that would imply that 0 = 1
in Z (this only happens in Z/1, which is a pretty stupid group)

This is all well and good for my little program that squares
integers. However, what about this monstrosity?

g :: Integer -> Integer

g x = (g x) + 1

The problem:

I We would like JIntegerK = Z
I That would imply that JgK : Z→ Z

I However, there is no actual function Z→ Z that satisfies the
definition of g! If there was, then that would imply that 0 = 1
in Z (this only happens in Z/1, which is a pretty stupid group)

This is all well and good for my little program that squares
integers. However, what about this monstrosity?

g :: Integer -> Integer

g x = (g x) + 1

The problem:

I We would like JIntegerK = Z
I That would imply that JgK : Z→ Z
I However, there is no actual function Z→ Z that satisfies the

definition of g! If there was, then that would imply that 0 = 1
in Z (this only happens in Z/1, which is a pretty stupid group)

As we know, g diverges for any input. Yet it is still a program and
therefore should still have meaning.

Moreover, we have the general program of providing meaning to
recursive definitions that do not necessarily diverge. After all,

fact 0 = 1

fact n = n * (fact (n - 1))

does not break down into a compisite of functions for which we
already have semantics. In other words, how can we define JfactK
without appealing to JfactK?
(We can solve this syntatically with the Y-combinator, but we are
not going to do that.)

As we know, g diverges for any input. Yet it is still a program and
therefore should still have meaning.

Moreover, we have the general program of providing meaning to
recursive definitions that do not necessarily diverge. After all,

fact 0 = 1

fact n = n * (fact (n - 1))

does not break down into a compisite of functions for which we
already have semantics. In other words, how can we define JfactK
without appealing to JfactK?
(We can solve this syntatically with the Y-combinator, but we are
not going to do that.)

We have to “dress up” the sets that we map our types to. That is,
we need a different semantic domain. Towards this, consider the
elephant in the room:

Prelude> :type undefined

undefined :: forall a. a

That is, undefined can be considered a member of any type
whatsoever. So Integer “contains” not only things like
0,−1, 1, . . . but also undefined. Don’t believe me?

h :: Integer -> Integer

h 0 = undefined

h x = x + 1

We have to “dress up” the sets that we map our types to. That is,
we need a different semantic domain. Towards this, consider the
elephant in the room:

Prelude> :type undefined

undefined :: forall a. a

That is, undefined can be considered a member of any type
whatsoever. So Integer “contains” not only things like
0,−1, 1, . . . but also undefined. Don’t believe me?

h :: Integer -> Integer

h 0 = undefined

h x = x + 1

We have to “dress up” the sets that we map our types to. That is,
we need a different semantic domain. Towards this, consider the
elephant in the room:

Prelude> :type undefined

undefined :: forall a. a

That is, undefined can be considered a member of any type
whatsoever. So Integer “contains” not only things like
0,−1, 1, . . . but also undefined. Don’t believe me?

h :: Integer -> Integer

h 0 = undefined

h x = x + 1

With this in mind, we are now going to spruce up Z a little bit.
We are simply going to add an element ⊥ to it! We will denote
our new and improved Z as Z⊥. This process is called lifting.

The idea is that ⊥ corresponds to computations that are undefined
or diverge.

Returning to our completely divergent g, we can denote this as:
JgK : Z⊥ → Z⊥
JgK(x) = ⊥

Our partially divergent h can be denoted similarly!

With this in mind, we are now going to spruce up Z a little bit.
We are simply going to add an element ⊥ to it! We will denote
our new and improved Z as Z⊥. This process is called lifting.

The idea is that ⊥ corresponds to computations that are undefined
or diverge.

Returning to our completely divergent g, we can denote this as:
JgK : Z⊥ → Z⊥
JgK(x) = ⊥

Our partially divergent h can be denoted similarly!

Adding ⊥ is only part of the “lifting” process. We are also going to
give every set a partial ordering. Let’s see what this means for Z.

Recall that we started with Z and added ⊥ to get Z⊥. We are now
going to declare that ⊥ is less than every integer in Z. That is,
any number has “more information” than ⊥.

Formally, this is achieved by defining a binary relation on Z⊥ which
we write as v. The relation is defined as follows:

x v y iff x = y or x = ⊥

n.b.: Do not confuse this with the usual ordering on Z! For
instance, it is not the case that 1 v 2. In fact, they are
incomparable under this ordering (hence the partial in partial
ordering).

Recall that we started with Z and added ⊥ to get Z⊥. We are now
going to declare that ⊥ is less than every integer in Z. That is,
any number has “more information” than ⊥.

Formally, this is achieved by defining a binary relation on Z⊥ which
we write as v. The relation is defined as follows:

x v y iff x = y or x = ⊥

n.b.: Do not confuse this with the usual ordering on Z! For
instance, it is not the case that 1 v 2. In fact, they are
incomparable under this ordering (hence the partial in partial
ordering).

Recall that we started with Z and added ⊥ to get Z⊥. We are now
going to declare that ⊥ is less than every integer in Z. That is,
any number has “more information” than ⊥.

Formally, this is achieved by defining a binary relation on Z⊥ which
we write as v. The relation is defined as follows:

x v y iff x = y or x = ⊥

n.b.: Do not confuse this with the usual ordering on Z! For
instance, it is not the case that 1 v 2. In fact, they are
incomparable under this ordering (hence the partial in partial
ordering).

As long as I’ve given you the axioms for categories and functors, I
might as well give you the ones for posets (partially ordered sets)!

Definition
A relation v on a set X is a partial ordering if:

I ∀x(x v x)

I ∀x , y(x v y and y v x implies x = y)

I ∀x , y , z(x v y and y v z implies x v z)

As long as I’ve given you the axioms for categories and functors, I
might as well give you the ones for posets (partially ordered sets)!

Definition
A relation v on a set X is a partial ordering if:

I ∀x(x v x)

I ∀x , y(x v y and y v x implies x = y)

I ∀x , y , z(x v y and y v z implies x v z)

As long as I’ve given you the axioms for categories and functors, I
might as well give you the ones for posets (partially ordered sets)!

Definition
A relation v on a set X is a partial ordering if:

I ∀x(x v x)

I ∀x , y(x v y and y v x implies x = y)

I ∀x , y , z(x v y and y v z implies x v z)

As long as I’ve given you the axioms for categories and functors, I
might as well give you the ones for posets (partially ordered sets)!

Definition
A relation v on a set X is a partial ordering if:

I ∀x(x v x)

I ∀x , y(x v y and y v x implies x = y)

I ∀x , y , z(x v y and y v z implies x v z)

Thus we move from the category of sets to the category of posets.
The morphisms also change. Instead of arbitraty functions of sets,
we demand that the functions be monotonic.

Definition
A function f : X → Y , where X ,Y are posets, is monotonic if for
all x1, x2 ∈ X :

x1 vX x2 implies f (x1) vY f (x2)

Intuition: A computable function preserves relative information
content.

Thus we move from the category of sets to the category of posets.
The morphisms also change. Instead of arbitraty functions of sets,
we demand that the functions be monotonic.

Definition
A function f : X → Y , where X ,Y are posets, is monotonic if for
all x1, x2 ∈ X :

x1 vX x2 implies f (x1) vY f (x2)

Intuition: A computable function preserves relative information
content.

Thus we move from the category of sets to the category of posets.
The morphisms also change. Instead of arbitraty functions of sets,
we demand that the functions be monotonic.

Definition
A function f : X → Y , where X ,Y are posets, is monotonic if for
all x1, x2 ∈ X :

x1 vX x2 implies f (x1) vY f (x2)

Intuition: A computable function preserves relative information
content.

The preceeding slides seem to suggest that J-K is actually a functor
from Hask to the category of partially ordered sets (morphisms are
monotonic functions).

This still isn’t quite right!

Strategy for denoting recursive functions:

I For a recursively defined f , express f as the fixed point of a
higher order function Φ. That is, f = Φ(f).

I To do this, adjust our domains so that Φ always exists and
has a “unique” fixed point.

Strategy for denoting recursive functions:

I For a recursively defined f , express f as the fixed point of a
higher order function Φ. That is, f = Φ(f).

I To do this, adjust our domains so that Φ always exists and
has a “unique” fixed point.

Strategy for denoting recursive functions:

I For a recursively defined f , express f as the fixed point of a
higher order function Φ. That is, f = Φ(f).

I To do this, adjust our domains so that Φ always exists and
has a “unique” fixed point.

Before we get into the hairy details, let’s consider an example:
Consider our old friend:

fact 0 = 1

fact n = n * (fact (n-1))

Let’s go ahead and define
Φ(f) = λn. 1 if n = 0

n ∗ f (n − 1) otherwise

Convince yourself that Φ(JfactK) = JfactK.

Before we get into the hairy details, let’s consider an example:
Consider our old friend:

fact 0 = 1

fact n = n * (fact (n-1))

Let’s go ahead and define
Φ(f) = λn. 1 if n = 0

n ∗ f (n − 1) otherwise

Convince yourself that Φ(JfactK) = JfactK.

Those following along at home will note that Φ : ZZ⊥
⊥ → ZZ⊥

⊥ .

(Recall that for sets X ,Y , XY is the set of all functions from X to
Y)

Problem: what is the partial ordering on ZZ⊥
⊥ ? We would like an

ordering such that JfactK is the least fixed point of Φ.

Then, the denotation of any recursive function will be the least
fixed point of an appropriate Φ.

Those following along at home will note that Φ : ZZ⊥
⊥ → ZZ⊥

⊥ .

(Recall that for sets X ,Y , XY is the set of all functions from X to
Y)

Problem: what is the partial ordering on ZZ⊥
⊥ ? We would like an

ordering such that JfactK is the least fixed point of Φ.

Then, the denotation of any recursive function will be the least
fixed point of an appropriate Φ.

Theorem
Let X and Y be posets. Consider the sets

I X × Y = {(x , y)|x ∈ X , y ∈ Y }
I XY = {f : X → Y |f monotonic}

These can be given partial orderings induced by the orderings on X
and Y .

In fact, these become the universal product and exponent in the
category of partially ordered sets. The universality is similar to the
universality of (a,b) and a->b for types a and b.

Theorem
Let X and Y be posets. Consider the sets

I X × Y = {(x , y)|x ∈ X , y ∈ Y }
I XY = {f : X → Y |f monotonic}

These can be given partial orderings induced by the orderings on X
and Y .

In fact, these become the universal product and exponent in the
category of partially ordered sets. The universality is similar to the
universality of (a,b) and a->b for types a and b.

Definition
Let X ⊆ Y be a subset of a poset Y . An element y ∈ Y is a least
upper bound (lub) for X iff

I ∀x ∈ X (x v y) (y is an upper bound)

I If y ′ is another element with this property, then y v y ′ (y is
the least upper bound)

Theorem
If X has a lub y, then it is unique. We denote it by

∐
X.

Proof.
Write down two lubs for X and invoke the antisymmetry axiom for
v.

Definition
Let X ⊆ Y be a subset of a poset Y . An element y ∈ Y is a least
upper bound (lub) for X iff

I ∀x ∈ X (x v y) (y is an upper bound)

I If y ′ is another element with this property, then y v y ′ (y is
the least upper bound)

Theorem
If X has a lub y, then it is unique. We denote it by

∐
X.

Proof.
Write down two lubs for X and invoke the antisymmetry axiom for
v.

Definition
Let X ⊆ Y be a subset of a poset Y . An element y ∈ Y is a least
upper bound (lub) for X iff

I ∀x ∈ X (x v y) (y is an upper bound)

I If y ′ is another element with this property, then y v y ′ (y is
the least upper bound)

Theorem
If X has a lub y, then it is unique. We denote it by

∐
X.

Proof.
Write down two lubs for X and invoke the antisymmetry axiom for
v.

Intuition: y has all the information in X and nothing else!

Example: let B = {true, false} and consider B+ × B+.

We have the following:

(⊥, false)
∐

(true,⊥) = (true, false)
(false, false)

∐
(true, true) does not exist

Intuition: y has all the information in X and nothing else!
Example: let B = {true, false} and consider B+ × B+.

We have the following:

(⊥, false)
∐

(true,⊥) = (true, false)
(false, false)

∐
(true, true) does not exist

Another example:

Let f , g ∈ ZZ+
+ defined by:

f (x) = x + 1 if x is odd, ⊥ otherwise
g(x) = x + 1 if x is even, ⊥ otherwise

Pop Quiz: What is f
∐

g ?

(f
∐

g)(x) = x + 1 for all x ∈ Z

Another example:

Let f , g ∈ ZZ+
+ defined by:

f (x) = x + 1 if x is odd, ⊥ otherwise
g(x) = x + 1 if x is even, ⊥ otherwise

Pop Quiz: What is f
∐

g ?

(f
∐

g)(x) = x + 1 for all x ∈ Z

Definition
A subset X of a poset Y is directed if for all x1, x2 ∈ X , x1

∐
x2

exists.

Intuition: Given any two things in X , the information is compatible
and they can be combined into one thing.

Definition
A complete partial order (cpo) is a poset Y such that

I Y has a bottom ⊥
I

∐
X exists for all directed X ⊆ Y

Intuition: A set of things that can be pairwise combined can be
mushed together into one thing.

Definition
A complete partial order (cpo) is a poset Y such that

I Y has a bottom ⊥
I

∐
X exists for all directed X ⊆ Y

Intuition: A set of things that can be pairwise combined can be
mushed together into one thing.

Examples

I Any finite poset with a bottom is a cpo.

I Given any unordered set X , X⊥ is a cpo.

I [0, 1] ∈ R given the standard ordering on R is a cpo

But [0, 1] in Q is not!

A function f : Y → Z of cpos is continuous if

I f is monotonic

I f preserves lubs. That is, for any directed set X ⊆ Y ,
f (
∐

X) =
∐

f (X).

Intuition: f preserves things that are bigger, and those big things
don’t go too far away!

Theorem
If f : Y → Z is a monotonic function between cpos, then if Y is
finite then f is continuous.

A function f : Y → Z of cpos is continuous if

I f is monotonic

I f preserves lubs. That is, for any directed set X ⊆ Y ,
f (
∐

X) =
∐

f (X).

Intuition: f preserves things that are bigger, and those big things
don’t go too far away!

Theorem
If f : Y → Z is a monotonic function between cpos, then if Y is
finite then f is continuous.

A function f : Y → Z of cpos is continuous if

I f is monotonic

I f preserves lubs. That is, for any directed set X ⊆ Y ,
f (
∐

X) =
∐

f (X).

Intuition: f preserves things that are bigger, and those big things
don’t go too far away!

Theorem
If f : Y → Z is a monotonic function between cpos, then if Y is
finite then f is continuous.

A function f : Y → Z of cpos is continuous if

I f is monotonic

I f preserves lubs. That is, for any directed set X ⊆ Y ,
f (
∐

X) =
∐

f (X).

Intuition: f preserves things that are bigger, and those big things
don’t go too far away!

Theorem
If f : Y → Z is a monotonic function between cpos, then if Y is
finite then f is continuous.

Big Idea: computable functions
are continuous maps of cpos.

Implication: the proper target
for J-K is the category of cpos
and continuous maps.

This big idea is reinforced by the

Theorem (CPO fixpoint theorem)

A continuous function f : X → X on a cpo has a least fixpoint,
written fix(x), which can be computed as the lub of the chain

⊥ v f (⊥) v f (f (⊥)) v f (f (f⊥)) v · · ·

Another way of writing this is:

fix(f) =
∐
n∈N
{f n(⊥)}

This big idea is reinforced by the

Theorem (CPO fixpoint theorem)

A continuous function f : X → X on a cpo has a least fixpoint,
written fix(x), which can be computed as the lub of the chain

⊥ v f (⊥) v f (f (⊥)) v f (f (f⊥)) v · · ·

Another way of writing this is:

fix(f) =
∐
n∈N
{f n(⊥)}

Little example:
Suppose f : B+ → B+ maps everything to true. Then:

⊥ = ⊥
f (⊥) = true
f (f (⊥)) = f (true) = true
f 3(⊥) = f (f 2(⊥)) = f (true) = true
...

We can see that this sequence converges to true, and that is
precisely the least (and only) fixpoint of f .

More interesting example:

ones = 1 : ones

Now let
f (x) = 1 : x where f : [N⊥]→ [N⊥]

We have the following sequence:

⊥ = ⊥
f (⊥) = 1 : ⊥
f (f (⊥)) = 1 : 1 : ⊥
...

The colimit of this is 1 : 1 : 1 : · · ·
Convince yourself that this is the least (and only) fixpoint of f .

More interesting example:

ones = 1 : ones

Now let
f (x) = 1 : x where f : [N⊥]→ [N⊥]

We have the following sequence:

⊥ = ⊥
f (⊥) = 1 : ⊥
f (f (⊥)) = 1 : 1 : ⊥
...

The colimit of this is 1 : 1 : 1 : · · ·
Convince yourself that this is the least (and only) fixpoint of f .

More interesting example:

ones = 1 : ones

Now let
f (x) = 1 : x where f : [N⊥]→ [N⊥]

We have the following sequence:

⊥ = ⊥
f (⊥) = 1 : ⊥
f (f (⊥)) = 1 : 1 : ⊥
...

The colimit of this is 1 : 1 : 1 : · · ·
Convince yourself that this is the least (and only) fixpoint of f .

Now let us recall our

Φ(f) = λn.if n = 0 then 1 else n ∗ f (n − 1)

Then,

⊥ = λn.⊥

Φ(⊥) = λn. if n = 0 then 1 else ⊥
Φ(Φ(⊥)) = λn. if n = 0 then 1 else n ∗ (if n − 1 = 0 then 1 else ⊥)
Φ3(n) = λn. if n = 0 then 1 else if n − 1 = 0 then 1

else (n − 1) ∗ (if n − 2 = 0 then 1 else ⊥)

Now let us recall our

Φ(f) = λn.if n = 0 then 1 else n ∗ f (n − 1)

Then,

⊥ = λn.⊥
Φ(⊥) = λn. if n = 0 then 1 else ⊥

Φ(Φ(⊥)) = λn. if n = 0 then 1 else n ∗ (if n − 1 = 0 then 1 else ⊥)
Φ3(n) = λn. if n = 0 then 1 else if n − 1 = 0 then 1

else (n − 1) ∗ (if n − 2 = 0 then 1 else ⊥)

Now let us recall our

Φ(f) = λn.if n = 0 then 1 else n ∗ f (n − 1)

Then,

⊥ = λn.⊥
Φ(⊥) = λn. if n = 0 then 1 else ⊥
Φ(Φ(⊥)) = λn. if n = 0 then 1 else n ∗ (if n − 1 = 0 then 1 else ⊥)

Φ3(n) = λn. if n = 0 then 1 else if n − 1 = 0 then 1
else (n − 1) ∗ (if n − 2 = 0 then 1 else ⊥)

Now let us recall our

Φ(f) = λn.if n = 0 then 1 else n ∗ f (n − 1)

Then,

⊥ = λn.⊥
Φ(⊥) = λn. if n = 0 then 1 else ⊥
Φ(Φ(⊥)) = λn. if n = 0 then 1 else n ∗ (if n − 1 = 0 then 1 else ⊥)
Φ3(n) = λn. if n = 0 then 1 else if n − 1 = 0 then 1

else (n − 1) ∗ (if n − 2 = 0 then 1 else ⊥)

In fact, Φk(⊥) = λn.n! if n < k and ⊥ otherwise.

Therefore fix(Φ) =
∐
{Φk(⊥)} is our old friend the factorial

function, and thus the denotation of

fact 0 = 1

fact n = n * (fact (n-1))

Phew! We finally have an idea of what J-K actually is: a functor
from the category Hask to the category of complete cpos and
continuous maps. Assuming that we can define the denotation of
“primitive” objects and morphisms in Hask, we can extend
recursively by appealing to the fixpoint theorem.

Let’s look at our category of cpos in more detail. The neat thing is
that the category of cpos gives us laziness “out of the box”.

Consider

Prelude> let f x = 1

Prelude> f undefined

1

We see that JfK(⊥) = 1. That is, by our definition of continuity, ⊥
need not be mapped to ⊥ by every continuous function. This is
the denotational semantics version of laziness!

Consider

Prelude> let f x = 1

Prelude> f undefined

1

We see that JfK(⊥) = 1. That is, by our definition of continuity, ⊥
need not be mapped to ⊥ by every continuous function. This is
the denotational semantics version of laziness!

Now consider

Prelude> let g (x,y) = x

Prelude> g (1, head [])

1

Prelude> head []

*** Exception: Prelude.head: empty list

According to our definition of products, (1,⊥) 6= (⊥,⊥) = ⊥. This
also allows laziness.

By contrast, to have strictness, we would do two things:

I Require continuous maps f : X → Y to map ⊥X to ⊥Y

I In the product cpo X × Y , identify (⊥X , ∗) with (∗,⊥Y) with
(⊥X ,⊥Y) = ⊥X×Y .

Thus, we have different semantic domains for laziness and
strictness.

I Laziness - the category of cpos

I Strictness - the category of “pointed” cpos

Note: This is eerily similar to the distinction between the category
of topological spaces and the category of pointed topological
spaces from the study of topology.

Thus, we have different semantic domains for laziness and
strictness.

I Laziness - the category of cpos

I Strictness - the category of “pointed” cpos

Note: This is eerily similar to the distinction between the category
of topological spaces and the category of pointed topological
spaces from the study of topology.

I’ve implicitely required J-K to preserve products and exponentials
throughout this talk.

A fancy way of saying this is that J-K is a cartesian functor.

Except that Hask is not cartesian closed for technical reasons - due
to the distinction between undefined and () and
(undefined, undefined) . So instead, I have to require that J-K
be cartesian on an appropriate cartesian closed subcategory of
Hask. (Beyond the scope of this talk)

I’ve implicitely required J-K to preserve products and exponentials
throughout this talk.

A fancy way of saying this is that J-K is a cartesian functor.

Except that Hask is not cartesian closed for technical reasons - due
to the distinction between undefined and () and
(undefined, undefined) . So instead, I have to require that J-K
be cartesian on an appropriate cartesian closed subcategory of
Hask. (Beyond the scope of this talk)

I’ve implicitely required J-K to preserve products and exponentials
throughout this talk.

A fancy way of saying this is that J-K is a cartesian functor.

Except that Hask is not cartesian closed for technical reasons - due
to the distinction between undefined and () and
(undefined, undefined) . So instead, I have to require that J-K
be cartesian on an appropriate cartesian closed subcategory of
Hask. (Beyond the scope of this talk)

As long as we’ve done all this work, I can’t resist talking a little
about categorical semantics. You should pay attention because
they appear in Moggi’s paper on monads and computation (http:
//www.disi.unige.it/person/MoggiE/ftp/lics89.pdf).

http://www.disi.unige.it/person/MoggiE/ftp/lics89.pdf
http://www.disi.unige.it/person/MoggiE/ftp/lics89.pdf

Astute observer’s will have noted that the process of taking a set
X to the poset X⊥ (lifting) is functorial. That is, maps between
sets turn into maps between partial orders. If f : X → Y is a
function, then there is a f⊥ : X⊥ → Y⊥ where f⊥(⊥X) = ⊥Y .

In fact, there is a monad structure on (−)⊥. After all, we can map
X⊥⊥ to X⊥ by identifying the two bottoms! There is also a trivial
map X → X⊥.

Astute observer’s will have noted that the process of taking a set
X to the poset X⊥ (lifting) is functorial. That is, maps between
sets turn into maps between partial orders. If f : X → Y is a
function, then there is a f⊥ : X⊥ → Y⊥ where f⊥(⊥X) = ⊥Y .

In fact, there is a monad structure on (−)⊥. After all, we can map
X⊥⊥ to X⊥ by identifying the two bottoms! There is also a trivial
map X → X⊥.

Our J-K functor can be thought of as taking values in the Kleisli
category of the monad (−)⊥ on the category of sets. Well, not
really! That only works for call-by-value languages!

After all, by making a program correspond to a morphism
X → Y⊥, you are not allowing things like

f x = 1

y = f (head [])

Moggi’s insight was to allow the semantics functor to take values
in the Kleisli category for a wider class of monads.

For instance, using the powerset monad corresponds to
non-deterministic computations (a function maps a value to a set
of possible values).

One can also construct monads that correspond to computations
with state.

Moggi’s insight was to allow the semantics functor to take values
in the Kleisli category for a wider class of monads.

For instance, using the powerset monad corresponds to
non-deterministic computations (a function maps a value to a set
of possible values).

One can also construct monads that correspond to computations
with state.

Moggi’s insight was to allow the semantics functor to take values
in the Kleisli category for a wider class of monads.

For instance, using the powerset monad corresponds to
non-deterministic computations (a function maps a value to a set
of possible values).

One can also construct monads that correspond to computations
with state.

These are sources that I shamelessly ripped off of and are great for
further reading:
http://www.cs.nott.ac.uk/~gmh/domains.html

http://en.wikibooks.org/wiki/Haskell/Denotational_

semantics

http://www.haskell.org/haskellwiki/Hask

http://www.cs.nott.ac.uk/~gmh/domains.html
http://en.wikibooks.org/wiki/Haskell/Denotational_semantics
http://en.wikibooks.org/wiki/Haskell/Denotational_semantics
http://www.haskell.org/haskellwiki/Hask

Once you’ve got the basics, you should be able to at least skim
this:
http://research.microsoft.com/en-us/people/dimitris/

hcc-popl.pdf

(Admittedly, a little knowledge of first order logic will also help!)

http://research.microsoft.com/en-us/people/dimitris/hcc-popl.pdf
http://research.microsoft.com/en-us/people/dimitris/hcc-popl.pdf

Summary:

I Operational semantics - “How does this program run?”

I Denotational semantics - “To what mathematical object does
this program correspond?”

I Axiomatic semantics - “What logical properties must any
interpretation of this program satisfy?”

A few more from Claus Reinke (http://www.haskell.org/
pipermail/haskell-cafe/2011-January/088315.html):

I anecdotal semantics: “you know, once I wrote this program,
and it just fried the printer..”

I barometric semantics: I think it is getting clearer..

I conventional semantics: usually, this means..

I detonational semantics: what does this button do?

I existential semantics: I’m sure it means something.

I forensic semantics: I think this was meant to prevent..

I game semantics: let the dice decide

I historical semantics: I’m sure this used to work

I idealistic semantics: this can only mean..

I jovial semantics: oh, sure, it can mean that.

I knotty semantics: hm, this part over here probably means..

I looking glass semantics: when I use a program, it means just
what I choose it to mean, neither more nor less

http://www.haskell.org/pipermail/haskell-cafe/2011-January/088315.html
http://www.haskell.org/pipermail/haskell-cafe/2011-January/088315.html

I musical semantics: it don’t mean a thing if it ain’t got that
swing.

I nihilistic semantics: this means nothing.

I optimistic semantics: this could mean..

I probabilistic semantics: often, this means that..

I quantum semantics: you can’t ask what it means.

I reactionary semantics: this means something else.

I sherlockian semantics: since it cannot possibly mean anything
else, ..

I transitional semantics: for the moment, this means that..

I utilitarian semantics: this means we can use it to..

I venerable semantics: this has always meant..

I weary semantics: ¡sigh¿ I guess that means..

I xenophobic semantics: for us here, this means..

I yogic semantics: we shall meditate on the meaning of this.

I zen semantics: ah!

Thanks!

