

A
Pragmatic
Case For

Static Typing

Slides available from github at:

https://github.com/bhurt/presentations/blob/master
/statictyping.odp

Please

Hold your

Comments,
Criticisms,
Objections,

Etc.

To the end

I've been paid to work on:

50+ KLoC Clojure code bases

250+ KLoC Ocaml code bases

(plus C, C++, Java, etc.)

What do I mean by
Pragmatic?

Programming

is a Means

not an End

Time
To

Working
Code

“Working code” means...

● Written
● Compiling
● Debugged
● Documented
● Maintainable

Static Typing
Reduces

Time To Working
Code

What I don't mean by
Static typing:

Java
C++/C
Pascal

C#

What I mean by
Static Typing:

Standard ML
Ocaml

F#

Haskell

How does

Static Typing

Reduce
Time to Working Code

?

I.

The Little Things

I.a.

Static Typing
reduces the time

to find and fix
simple bugs

A type error gives you...

● That an error exists
● The file the error is in
● What line the error is on
● What column the error starts in
● A hint as to what the problem is

 … at compile time

Time to fix Static Typing Error:

Average: 10's of seconds

Worst Case: 10's of minutes

An error found by unit testing
gives you...

● That a bug exists
● What module/class the bug was detected in
● The manifestation of the bug
● A stack trace (maybe)
● The ability to reproduce the bug

… and that's all

Time to fix Testing Error:

Average: Minutes

Worst Case: Hours

10's of Seconds Minutes
 To < To

10's of Minutes Hours

I.B.

Static Typing
eliminates

null pointer exceptions

No such thing as a null value.

data Maybe a =
 Just a

 | Nothing

Example:

find :: (a -> bool) -> [a] -> Maybe a

Maybe Int ≠ Int

So:

(find f [1..100]) + 3

Is a type error.

 case (find f [1..100]) of
 Just x -> x + 3
 Nothing -> 77

II.

Large scale programming

Large Scale
Programming

Is Different

What do I mean by “Large Scale”?

● Lots of code (10's of KloC)

● Long lived (years+)

● Many developers (3 or more)

Not all programming
is large scale

(and that's OK)

II.a.

“Don't do that!”

“Don't do that!”
doesn't work!

Brian's Observation:

At 3 people on a team, there is a 50% chance that
at least one of them is a full-time idiot.

As the teams grow larger, the probability of not
having an idiot on the team falls rapidly to zero.

We are all idiots
some of the

time.

Static Types turn
“Don't do that”

Into
“Can't do that”

 (defn ex [b x]
 (if b
 (+ x 3)
 (x 3)))

 data Either a b =
 Left a
 | Right b

 ex :: Either Int (Int -> Int) -> Int
 ex (Left x) = x + 3
 ex (Right x) = x 3

Corollary:

The time you most need static typing is exactly
the time it's most tempting to not use it.

II.b.

Documentation

In a large scale project...

Documentation is
even more important!

In a large scale project...

Documentation is
even harder!

Types make dandy
(machine checked)

documentation

Consider:

(a -> Bool) -> [a] -> Maybe a

(a -> Bool) -> [a] -> Maybe a

I know that:
● It takes some set of elements from the list
● Passes those elements into the function given
● Either returns:

● Just an element from the list
● Nothing

● Doesn't do any I/O or other side effects

II.c.

Maintenance

Code
Must

Change

Changing the behavior
of a function

is not necessarily wrong

Example:

… -> Int

Becomes
… -> Maybe Int

Becomes
… -> Either Int String

Becomes
… -> Either Int ErrorMessage

A function changed behavior:

What needs to get fixed now?

Unit testing:
“Something broke”

Static Typing:
“This call right here is wrong”

III.

Multithreading

Multithreading
Is Coming

Multithreading

● Moore's law is now:

2x cores/2 years
● 8 cores now

256 cores in 10 years
8,192 cores in 20 years

Multithreaded Code
Is Different

The Four Horsemen of
The Parallel Apocalypse

●Race Conditions
●Deadlocks
●Livelocks
●Priority Inversions

Every
piece of mutable state needs to

come with ironclad guarantees that
either:

- accesses to it are properly
synchronized

- only one thread accesses it

Monads

Monads
represent a computation

(producing a value)
performed in a domain

where some condition is true.

The Monad... Means the computation...

IO a Can do I/O, etc.

STM a Must be in a transaction

ST s a Must execute in a single
thread s

Maybe a May not produce a value

Functions declare what domain they are in by the
monad of their return type.

e.g.

hGetLine :: Handle -> IO String

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

Monads
Allow us to prove
We don't have

“Four Horsemen” bugs

Software Transactional Memory
(STM)

● “Like database transactions for
mutable variables”

● Gives 'A', 'C', and 'I' of ACID
● Solves all four horsemen

A tale of two STMs

● C#:
● Many developers
● 2 years

● FAILURE
● Haskell:

● Few developers (SPJ & a grad student?)
● “a long weekend”

● SUCCESS

The problems with STM

● Performing non-transactional
side effects while in a
transaction

● Accessing transactional
variables not in a transaction

Monads prevent side effects
within a transaction.

atomically :: STM a -> IO a
“Performs the transaction (causing side effects)”

??? :: IO a -> STM a
No such function!

Can't do that!

Monads enforce being in transaction
to access mutable cells.

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

A similar trick for
Single Threaded Access

newSTRef :: a -> ST s (STRef s a)

readSTRef :: STRef s a -> ST s a

writeSTRef :: STRef s a -> a -> ST s ()

runST :: (forall s. ST s a) -> a

What you should think...

Or maybe...

IV.

Static Types

vs.

(Lisp) Macros

Statically typed languages
don't use macros

(to a first approximation)

C++, Java, etc.:
“Code and data are different things.”

Lisp, Haskell:
“Code and data are the same thing”

Lisp: “All code is data”

Leads to:

● Homoiconic representation (s-
expressions)

● Macros (code that manipulates
other code)

Leads to:

● Homoiconic representation (s-
expressions)

● Macros (code that manipulates
other code)

Haskell: “All Data is Code”

Leads to:

● Lazy Evaluation
● Combinators (including Monads)

“All code is data”

≈
“All data is code”

In Review...

● Reduced bug fix time
● No more NPEs
● Machine checked

documentation
● (Some) protection

against idiots
(including you)

● Maintainable code
● Protection against the

four horsemen
● Powerful abstractions
● But most

importantly...

Static Typing means

Working
Code

Sooner

fini

Addendums

A Brief

And Needlessly Provocative

History of
Functional Programming

In 1936, Alonzo Church
Invents Lisp

In 1936, Alonzo Church
Invents Lisp

Except...

He called it “the Lambda Calculus”

He thought he was doing mathematics

In 1936, Alonzo Church
Invents Lisp

Except...

He called it “the Lambda Calculus”

He thought he was doing mathematics

Problem:

Lambda Calculus still allows for paradox and
invalid proofs.

So, In 1940, Alonzo Church
Invents Haskell

Except...

He called it
“the Simply Typed Lambda Calculus”

Still thought he was doing mathematics

`

Kurt Gödel's response:

In 1958, John McCarthy realizes that
Alonzo Church was doing

Programming

NOT

Mathematics

Problem:

Lisp still allows for buggy and wrong programs.

So, in 1973, Robin Milner steals the
Simply Typed Lambda Calculus

And renames it “Meta-Language”
(aka ML)

Alan Turing's Response:

`

John Carmack quotes are from:

http://www.altdevblogaday.com/2011/12/24/static-code-analysis/

http://www.altdevblogaday.com/2011/12/24/static-code-analysis/

“if you have a large enough codebase, any class
of error that is syntactically legal probably exists

there.”

- John Carmack

“Anything that isn’t crystal clear to a static analysis
tool probably isn’t clear to your fellow

programmers, either. “

- John Carmack

“A lot of the serious reported errors are due to
modifications of code long after it was written.”

- John Carmack

“The classic hacker disdain for “bondage and
discipline languages” is short sighted – the needs
of large, long-lived, multi-programmer projects are

just different than the quick work you do for
yourself.”

- John Carmack

“If you aren’t deeply frightened about all the
additional issues raised by concurrency, you

aren’t thinking about it hard enough.”

- John Carmack

“The first step is fully admitting that the code you
write is riddled with errors. That is a bitter pill to
swallow for a lot of people, but without it, most

suggestions for change will be viewed with
irritation or outright hostility. You have to want

criticism of your code.”

- John Carmack

Real Statically Typed Languages
have...

● Type inference
● No need to explicitly annotate most types

● REPLs
● A succinct type notation
● Powerful types

● More than just type variables (templates/generics)

Important Note:

Static Typing

vs.

Unit Testing
Agile Development

Etc.

Important Note:

Static Typing

ANDAND

Unit Testing
Agile Development

Etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

