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e Numbers have Digits




Numbers

e Numbers have Digits

* Digits are 0,1,2,3,4,5,0,7,8,9




Here are Some Numbers
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Here are Some Numbers

°*3
* 34

.25

Numbers with only digits we call Naturals
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Here are some more numbers

® 235

e 18.21




Here are some more numbers

® 23.5
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Here are some more numbers

® 23.5
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Here are some more numbers

® 23.5
® 138.21
® 0.9

® 5.0

Numbers with digits and a dot and more digits
we call Reals




Reals — Naturals




Reals — Naturals

e Take away the dot and subsequent digits. If
those digits are nonzero, add one.




Reals — Naturals
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Reals — Naturals

e Take away the dot and subsequent digits. If
those digits are nonzero, add one.

o Aka, “ceiling’

o Alternately, “forget”




Naturals — Reals




Naturals — Reals

e Stickona .o




Naturals — Reals

e Stickona .o

e Call this “lift” or “free”.




Some Numbers are Bigger
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Some Numbers are Bigger

than Other Numbers

®* A Preorder has <
* x < yandyS zgiveSXS z

® But “not x < y” does not give “y < x”




Some Numbers are Bigger

than Other Numbers

®* A Preorder has <
*x < yandyS z gives X S 7

® But “not x < y” does not give “y < x”

e Since numbers have an order, they have a
preorder




Here’s Something Fun

xX., V. € Reals
%,y €& Naturals

liftx<y < xc<ceilingy.

liftx<y < xc<forgety.
< on Reals = < on Naturals

4.0< 4.5 4<%




Here’s Something Fun

xX., V. € Reals
%,y €& Naturals

liftx<y < xc<ceilingy.
liftx<y < xc<forgety.
< on Reals = < on Naturals

4.0< 4.5 4<%

This Relation on Preordered Sets is a
Galois Connection




This Galois Connection
Respects Semirings

:: (Nat, Nat) -> Nat ===
) ¢ (Real, Real) -> Real

) :: (Nat, Nat) -> Nat ===
:: (Real, Real) -> Real

:: (Real, Real) -> Real
) ¢ (Nat, Nat) -> Nat

:: (Real, Real) -> Real ===
:: (Nat, Nat) -> Nat




*10+40<55<—=<1+4<6

°*10+40<29+29<—=1+4<3+3

*50=<19* 29~ 5<2*3




Now Log and Exp

which respect Semigroups

e forget(x) = 1ln (X)
o lift (x) = exp(x)
e forget(*) = (+)

olift(+) = (*)

expx<y. < x<lny




Pop Quiz

08 * 34 < 123456 7




Pop Quiz

08 * 34 < 123456 7

e How many people know the answer to this?




Pop Quiz

08 * 34 < 123456 7

e How many people know the answer to this?

e How many people performed the
multiplication to learn the answer?




Knowing beyond Calculating

e We can answer some questions without
computing an entire result.

e The formalization of this knowing beyond
calculating is an adjunction.




lift x = y. & = forget vy.

Real — Log(R) — Ceil(Log(R))
98 —> Log(98) — Ceil(Log(98))
34 —> Log(34) — Ceil(Log(34))
2 + 2 = 4

100 * 100 = 10000

10000 < 123456




lift x = y. & = forget vy.

Real — Log(R) — Ceil(Log(R))
98 —> Log(98) — Ceil(Log(98))
34 —> Log(34) — Ceil(Log(34))
2 + 2 = 4

100 * 100 = 10000

10000 < 123456

e Elementary School Shortcuts are Adjunctions




lift x = y. & = forget vy.

Real — Log(R) — Ceil(Log(R))
98 —> Log(98) — Ceill(Log(98))
34 —> Log(34) — Ceil(Log(34))
2 + 2 = 4

100 * 100 = 10000

10000 < 123456

e Elementary School Shortcuts are Adjunctions

e Arithmetic Equations are a great
Domain Specific Language for Numbers.




Categories

e Have objects
e Have arrows (morphisms)

e Have conditions (identity and composition)




Functors

e Take object to objects
o Take arrows to arrows

* Preserve identity; Preserve composition




Adjoint Functors

o F 141G
o F:D—C
e G:C—D

*F—-F-(G-F)—=F-G)-F—=F
*G—-G-FH-G—-G-F-G)—=G




Py x
Home (FY,X)

Homp( Y. GX)

G
Hom(Fg,f) Hom(g,Gf)

!
Home (FY'. X") - Homp(Y'.GX")
Y X




(3alois Connections

e Partially Ordered Sets as a Category

®* morphism between x andy <> x <y

o Lift 4 Ceiling

e Ixp - Log




Intuitions from (Galois
Connections

e Functors have a “forgetful” and “free” side
e The “free” side is the Left one.

e The forgetful size tends to smush things.
e It smushes all in one direction.

e The free side does the “one obvious” thing.

e Every right adjoint has only one left (upto iso)

e Vice versa

e Adjunctions compose to form new Adjunctions.




Part 11:

Adjunctions and
Programming l.anguages




Every Language has a Theory

e Language = Things you can Say

e Theory = What you can say about those
things.




Some languages have bad

theories

<7xml version="1.0" encoding="UTF-8"7>
<modification>
<id>After ABC, add 123 only if XYZ not in file</id>
<version>1.0</version>
<vgmver>Z.X</vgmver>
<author>xxx</author>
<file name="path/to/myfile.php">
<operation info="After ABC, add 123 if XYZ not in file">
<ignoreif><![CDATA[
XYZ
1]></ignoreif>
<search position="after"><![CDATA[
Svar = "ABC';
11></search>
<add><! [CDATA[
$var = '123';
11></add>
</operation>
</file>
</modification>







e Things are similar, therefore equational
reasoning is possible.
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e Things are similar, therefore equational
reasoning is possible.

e Things are different, therefore equational
reasoning 1S Necessary.

e Designing a language is balancing between the
two — allowing things that are sufhiciently
different, but no more!

e We want languages open to multiple, nontrivial
models.

e This is a job for adjunctions




The Adjunction between
Syntax and Semantics




The Adjunction between
Syntax and Semantics

dSyntax — Semantics




Model : Sentence — a
Theory : Set Sentence

Syntax is also called “structure”




Model : Sentence — a
Theory : Set Sentence

Syntax  : Models — Theory
Semantics : Theory — Models

Syntax is also called “structure”




data EXpr

= Sum ExXpr EXpr
| Product Expr Expr
| Val Double




data EXpr

= Sum ExXpr EXpr
| Product Expr Expr

Val Double

ProductF a a
| ValF Double
instance Functor ExprF where ...
newtype Fix f = Fix (f (Fix f))

data ExprF a = SumF a a




newtype Mu f
Mu {runMu forall a. (f a -=> a) -> a }

fixToMu :: Functor f => Fix f -> Mu £
fixToMu (Fix expr) =
Mu $ \ £ -=> £ . fmap (($f) . runMu . fixToMu) $ expr




newtype Mu f =
Mu {runMu :: forall a. (f a -> a) -> a }

fixToMu :: Functor f£f => Fix £ -> Mu £

fixToMu (Fix expr) =
Mu $ \ £ -=> £ . fmap (($f) . runMu . fixToMu) $ expr

type Sentence f = Fix f
type Model £f a = £ a -> a

runInterp :: Functor f => Model f a -> Sentence f -> a

runInterp i = \e -> runMu (fixToMu e) i

interpExp :: Model ExprF Double
interpExp (SumF X y) = X + y
interpExp (ProductF x y) = x * y
interpExp (ValF d) = d

—— runInterp interpExp simpleExpr =




Models have Adjoints!

type Model f a = f a -> a
type CoModel £ a = a -> £ a
adjModel :: (f a -> a) -> (a -> £ a)

adjModel finds the minimal “f a” that yields a.




Models yield Adjoints!

runlInterp :: Model f a -> Sentence f -> a
findSentence :: Model f a -> a -> Sentence f

runlnterp finds the unique A given by the sentence.
findSentence = find the minimal sentence that yields an A.

findSentence m = Fix . adjModel m

findSentence . runInterp ==== Normalization by Evaluation




type Test a = a -> Bool

—— we can take: Model £ a » Model f Bool

semantics ::
Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
Test a -> Set (Model f a) -> Set (Sentence f)
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type Test a = a -> Bool

—— we can take: Model £ a » Model f Bool

semantics ::
Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
Test a -> Set (Model f a) -> Set (Sentence f)

4 W VV WA



Models have Validity

type Test a = a -> Bool

-— we can take: Model £ a » Model f£ Bool

semantics ::
Test a -> Set (Sentence f) -> Set (Model f a)

syntax
Test a -> Set (Model f a) -> Set (Sentence f)

e More models = fewer theories
e More theories = fewer models

e (Galois Connection




Another Example

e Language is polynomial expressions in 3
variables

e Semantic Domain is Reals
 Models are triples representing substitutions
e Validity judgement is equality to zero

 More formulae to satisty = Fewer assignments
work

e More assignments = Fewer formulae are
satisfied by them




Adjoint Properties

e indModels . indTheories . indModels =
findModels

e findTheories . findModels. findTheories =
findTheories

e findTheories . findModels = closure of the
models. If you have the first set you might as

well have all the rest.

e findModels . findTheories = closure of the

theory: If you can say these sentences, you
might as well say the rest.




Morphisms between Theories
are Natural Transformations

type Natural f g = forall a. £f a -> g a

data Expr2F a = Suml2F a a
Product2F a a
Val2F Integer

: ¢ Natural ExprF EXpr2F
(SumF X y) = SumlF x vy
(ProductF x y) = Product2F X y
(ValF d) = Val2F . ceiling . log $ d




transToModel ::
Natural f g -> Model f (Sentence qg)

transToModel eta Fix . eta

morphSentence :: Functor f =>
Natural f g -> Sentence f -> Sentence g

morphSentence eta = runlnterp
(transToModel eta)




transToModel ::
Natural £ g -> Model f (Sentence qg)

transToModel eta Fix . eta

morphSentence :: Functor f =>
Natural £ g -> Sentence f -> Sentence g

morphSentence eta = runlnterp
(transToModel eta)

Every theory is someone else's semantic domain.

Chains of transformation give rise to chains of adjunctions
give rise to towers of semantics.




(aside) What about Effects?

o Effects break referential transparency
e Names (let/lambda), Mutation, Exceptions

o Capture Effects in your Semantic Domain

e Monad m => Model f (m a)




What is the correct Semantic
Domain for Programs?

The problem is in capturing recursive definitions.

The answer to this question leads us to
Denotational Semantics

(and a whole other talk).




Part 11:
Applications




e Don’t start with Theories (syntax)

e Start with Semantic Domains (combinators)
e Write theories that match your domains

e Layer theories on theories, with each model
disallowing more sentences, and providing
more rules

e Include an AST - leave yourself open to
multiple interpretations




adf-dfa

e Applicative Combinators
o Haskell DFA Combinators
e Monadic Transition Collections

e Transition Collections

e LLVM AST

e LLLVM Bytecode
e Assembly



® String

e NFA

e Transition Collections
e LLVM AST

e LLLVM Bytecode

e Assembly




adf-dfa

e Applicative Combinators

e Haskell DFA Combinators

e Monadic Transition Collections
e Transition Collections

* Direct Interpretation



Abstract Interpretation

e Model T D
e [ >D
e Model T’ D’ is an abstraction of Model T D

when
e C:DD—=D4HA:D —=D
o C:T —=T 4A:T =T

o "—=T—=D<T" =D —=D




Things we may want to do

e Find extremum

e Find datasources/effects
e Check/infer types

e Guarantee “safety”

e Partial evaluation




LLanguages Computers can
Reason About




LLanguages Computers can
Reason About

U

Languages People can Reason

About




PS.

e Every adjunction gives rise to a monad.

e Every monad can be factored into an
adjunction.

e Adjunctions are everywhere, once you know
what you'’re looking for.
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