
Domain Specific Languages
and Towers of Abstraction

Gershom Bazerman

Part I:
Numbers

Numbers

Numbers

• Numbers have Digits

Numbers

• Numbers have Digits

• Digits are 0,1,2,3,4,5,6,7,8,9

Here are Some Numbers

Here are Some Numbers

• 3

Here are Some Numbers

• 3

• 34

Here are Some Numbers

• 3

• 34

• 25

Here are Some Numbers

• 3

• 34

• 25

Numbers with only digits we call Naturals

Here are some more numbers

• 23.5

Here are some more numbers

• 23.5

• 18.21

Here are some more numbers

• 23.5

• 18.21

• 0.9

Here are some more numbers

• 23.5

• 18.21

• 0.9

• 5.0

Here are some more numbers

• 23.5

• 18.21

• 0.9

• 5.0

Here are some more numbers

Numbers with digits and a dot and more digits
we call Reals

Reals → Naturals

Reals → Naturals

• Take away the dot and subsequent digits. If
those digits are nonzero, add one.

Reals → Naturals

• Take away the dot and subsequent digits. If
those digits are nonzero, add one.

• Aka, “ceiling”

Reals → Naturals

• Take away the dot and subsequent digits. If
those digits are nonzero, add one.

• Aka, “ceiling”

• Alternately, “forget”

Naturals → Reals

Naturals → Reals

• Stick on a .0

Naturals → Reals

• Stick on a .0

• Call this “lift” or “free”.

Some Numbers are Bigger
than Other Numbers

Some Numbers are Bigger
than Other Numbers

• A Preorder has ≤

Some Numbers are Bigger
than Other Numbers

• A Preorder has ≤
• x ≤ y and y ≤ z gives x ≤ z

Some Numbers are Bigger
than Other Numbers

• A Preorder has ≤
• x ≤ y and y ≤ z gives x ≤ z

• But “not x ≤ y” does not give “y ≤ x”

Some Numbers are Bigger
than Other Numbers

• A Preorder has ≤
• x ≤ y and y ≤ z gives x ≤ z

• But “not x ≤ y” does not give “y ≤ x”

• Since numbers have an order, they have a
preorder

x., y. "∈ Reals
x, y "∈ Naturals

lift x ≤ y. "" ⇔ x ≤ ceiling y.
lift x ≤ y. "" ⇔ x ≤ forget y.
≤ on Reals"⇔ ≤ on Naturals

4.0 ≤ 4.5 ⇔ 4 ≤ 5

Here’s Something Fun

x., y. "∈ Reals
x, y "∈ Naturals

lift x ≤ y. "" ⇔ x ≤ ceiling y.
lift x ≤ y. "" ⇔ x ≤ forget y.
≤ on Reals"⇔ ≤ on Naturals

4.0 ≤ 4.5 ⇔ 4 ≤ 5
This Relation on Preordered Sets is a

Galois Connection

Here’s Something Fun

This Galois Connection
Respects Semirings

• lift (+) :: (Nat, Nat) -> Nat ===
 (+) :: (Real, Real) -> Real

• lift (*) :: (Nat, Nat) -> Nat ===
 (*) :: (Real, Real) -> Real

• forget (+) :: (Real, Real) -> Real ===
 (+) :: (Nat, Nat) -> Nat

• forget (*) :: (Real, Real) -> Real ===
 (*) :: (Nat, Nat) -> Nat

• 1.0 + 4.0 ≤ 5.5 ⇔ 1 + 4 ≤ 6

• 1.0 + 4.0 ≤ 2.9 + 2.9 ⇔ 1 + 4 ≤ 3 + 3

• 5.0 ≤ 1.9 * 2.9 ⇔ 5 ≤ 2 * 3

•forget(x) = ln (x)

•lift(x) = exp(x)

•forget(*) = (+)

•lift(+) = (*)

Now Log and Exp
which respect Semigroups

exp x ≤ y. " " ⇔ x ≤ ln y.

Pop Quiz

98 * 34 < 123456 ?

Pop Quiz

98 * 34 < 123456 ?

• How many people know the answer to this?

Pop Quiz

98 * 34 < 123456 ?

• How many people know the answer to this?

• How many people performed the
multiplication to learn the answer?

Knowing beyond Calculating

• We can answer some questions without
computing an entire result.

• The formalization of this knowing beyond
calculating is an adjunction.

• lift x ≤ y. ⇔ x ≤ forget y.

• Real → Log(R) → Ceil(Log(R))

• 98 → Log(98) → Ceil(Log(98)) = 2

• 34 → Log(34) → Ceil(Log(34)) = 2

• 2 + 2 ≤ 4

• 100 * 100 ≤ 10000

• 10000 < 123456

• lift x ≤ y. ⇔ x ≤ forget y.

• Real → Log(R) → Ceil(Log(R))

• 98 → Log(98) → Ceil(Log(98)) = 2

• 34 → Log(34) → Ceil(Log(34)) = 2

• 2 + 2 ≤ 4

• 100 * 100 ≤ 10000

• 10000 < 123456

• Elementary School Shortcuts are Adjunctions

• lift x ≤ y. ⇔ x ≤ forget y.

• Real → Log(R) → Ceil(Log(R))

• 98 → Log(98) → Ceil(Log(98)) = 2

• 34 → Log(34) → Ceil(Log(34)) = 2

• 2 + 2 ≤ 4

• 100 * 100 ≤ 10000

• 10000 < 123456

• Elementary School Shortcuts are Adjunctions

• Arithmetic Equations are a great
Domain Specific Language for Numbers.

Categories

• Have objects

• Have arrows (morphisms)

• Have conditions (identity and composition)

Functors

• Take object to objects

• Take arrows to arrows

• Preserve identity, Preserve composition

Adjoint Functors

• F ⊣ G
• F : D → C
• G : C → D

• F → F ∘ (G ∘ F) → (F ∘ G) ∘ F → F

• G → (G ∘ F) ∘ G → G ∘ (F ∘ G) → G

Or this:

Galois Connections

• Partially Ordered Sets as a Category

• morphism between x and y ⇔ x ≤ y

• Lift ⊣ Ceiling

• Exp ⊣ Log

Intuitions from Galois
Connections

• Functors have a “forgetful” and “free” side

• The “free” side is the Left one.

• The forgetful size tends to smush things.

• It smushes all in one direction.

• The free side does the “one obvious” thing.

• Every right adjoint has only one left (upto iso)

• Vice versa

• Adjunctions compose to form new Adjunctions.

Part II:
Adjunctions and

Programming Languages

Every Language has a Theory

• Language = Things you can Say

• Theory = What you can say about those
things.

Some languages have bad
theories

• Things are similar, therefore equational
reasoning is possible.

• Things are similar, therefore equational
reasoning is possible.
• Things are different, therefore equational

reasoning is necessary.

• Things are similar, therefore equational
reasoning is possible.
• Things are different, therefore equational

reasoning is necessary.
• Designing a language is balancing between the

two — allowing things that are sufficiently
different, but no more!

• Things are similar, therefore equational
reasoning is possible.
• Things are different, therefore equational

reasoning is necessary.
• Designing a language is balancing between the

two — allowing things that are sufficiently
different, but no more!
• We want languages open to multiple, nontrivial

models.

• Things are similar, therefore equational
reasoning is possible.
• Things are different, therefore equational

reasoning is necessary.
• Designing a language is balancing between the

two — allowing things that are sufficiently
different, but no more!
• We want languages open to multiple, nontrivial

models.
• This is a job for adjunctions

The Adjunction between
Syntax and Semantics

The Adjunction between
Syntax and Semantics

Syntax ⊣ Semantics

Model : Sentence → a
Theory : Set Sentence

Syntax is also called “structure”

Model : Sentence → a
Theory : Set Sentence

Syntax : Models → Theory
Semantics : Theory → Models

Syntax is also called “structure”

data Expr = Sum Expr Expr
 | Product Expr Expr
 | Val Double

Here’s a Theory

data Expr = Sum Expr Expr
 | Product Expr Expr
 | Val Double

Here’s a Theory

data ExprF a = SumF a a
 | ProductF a a
 | ValF Double
instance Functor ExprF where ...
newtype Fix f = Fix (f (Fix f))

newtype Mu f =
 Mu {runMu :: forall a. (f a -> a) -> a }

fixToMu :: Functor f => Fix f -> Mu f
fixToMu (Fix expr) =
 Mu $ \ f -> f . fmap (($f) . runMu . fixToMu) $ expr

type Sentence f = Fix f

type Model f a = f a -> a

runInterp :: Functor f => Model f a -> Sentence f -> a
runInterp i = \e -> runMu (fixToMu e) i

interpExp :: Model ExprF Double
interpExp (SumF x y) = x + y
interpExp (ProductF x y) = x * y
interpExp (ValF d) = d

-- runInterp interpExp simpleExpr = 3

newtype Mu f =
 Mu {runMu :: forall a. (f a -> a) -> a }

fixToMu :: Functor f => Fix f -> Mu f
fixToMu (Fix expr) =
 Mu $ \ f -> f . fmap (($f) . runMu . fixToMu) $ expr

type Model f a = f a -> a
type CoModel f a = a -> f a
adjModel :: (f a -> a) -> (a -> f a)

Models have Adjoints!

adjModel finds the minimal “f a” that yields a.

runInterp :: Model f a -> Sentence f -> a
findSentence :: Model f a -> a -> Sentence f

Models yield Adjoints!

runInterp finds the unique A given by the sentence.

findSentence = find the minimal sentence that yields an A.

findSentence m = Fix . adjModel m

findSentence . runInterp ==== Normalization by Evaluation

type Test a = a -> Bool

-- we can take: Model f a ! Model f Bool

semantics ::
 Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
 Test a -> Set (Model f a) -> Set (Sentence f)

Models have Validity

type Test a = a -> Bool

-- we can take: Model f a ! Model f Bool

semantics ::
 Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
 Test a -> Set (Model f a) -> Set (Sentence f)

Models have Validity

• More models = fewer theories

type Test a = a -> Bool

-- we can take: Model f a ! Model f Bool

semantics ::
 Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
 Test a -> Set (Model f a) -> Set (Sentence f)

Models have Validity

• More models = fewer theories

• More theories = fewer models

type Test a = a -> Bool

-- we can take: Model f a ! Model f Bool

semantics ::
 Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
 Test a -> Set (Model f a) -> Set (Sentence f)

Models have Validity

• More models = fewer theories

• More theories = fewer models

• Galois Connection

Another Example

• Language is polynomial expressions in 3
variables
• Semantic Domain is Reals
• Models are triples representing substitutions
• Validity judgement is equality to zero
• More formulae to satisfy = Fewer assignments

work
• More assignments = Fewer formulae are

satisfied by them

Adjoint Properties

• findModels . findTheories . findModels =
findModels
• findTheories . findModels. findTheories =

findTheories
• findTheories . findModels = closure of the

models. If you have the first set you might as
well have all the rest.
• findModels . findTheories = closure of the

theory. If you can say these sentences, you
might as well say the rest.

type Natural f g = forall a. f a -> g a

data Expr2F a = Sum2F a a
 | Product2F a a
 | Val2F Integer

trans :: Natural ExprF Expr2F
trans (SumF x y) = Sum2F x y
trans (ProductF x y) = Product2F x y
trans (ValF d) = Val2F . ceiling . log $ d

Morphisms between Theories
are Natural Transformations

transToModel ::
 Natural f g -> Model f (Sentence g)
transToModel eta = Fix . eta

morphSentence :: Functor f =>
 Natural f g -> Sentence f -> Sentence g
morphSentence eta = runInterp
 (transToModel eta)

transToModel ::
 Natural f g -> Model f (Sentence g)
transToModel eta = Fix . eta

morphSentence :: Functor f =>
 Natural f g -> Sentence f -> Sentence g
morphSentence eta = runInterp
 (transToModel eta)

Every theory is someone else's semantic domain.

Chains of transformation give rise to chains of adjunctions
give rise to towers of semantics.

(aside) What about Effects?

• Effects break referential transparency

• Names (let/lambda), Mutation, Exceptions

• Capture Effects in your Semantic Domain

• Monad m => Model f (m a)

What is the correct Semantic
Domain for Programs?

The problem is in capturing recursive definitions.

The answer to this question leads us to
Denotational Semantics

(and a whole other talk).

Part II:
Applications

So?

• Don’t start with Theories (syntax)

• Start with Semantic Domains (combinators)

• Write theories that match your domains

• Layer theories on theories, with each model
disallowing more sentences, and providing
more rules

• Include an AST -- leave yourself open to
multiple interpretations

adf-dfa

• Applicative Combinators
• Haskell DFA Combinators
• Monadic Transition Collections
• Transition Collections
• LLVM AST
• LLVM Bytecode
• Assembly

adf-dfa

• String
• NFA
• Transition Collections
• LLVM AST
• LLVM Bytecode
• Assembly

adf-dfa

• Applicative Combinators
• Haskell DFA Combinators
• Monadic Transition Collections
• Transition Collections
• Direct Interpretation

Abstract Interpretation

• Model T D

• T -> D

• Model T’ D’ is an abstraction of Model T D
when

• C : D’ → D ⊣ A : D → D’

• C : T → T’ ⊣ A : T → T’

• T’ → T → D ≤ T’ → D’ → D

Things we may want to do

• Find extremum

• Find datasources/effects

• Check/infer types

• Guarantee “safety”

• Partial evaluation

Languages Computers can
Reason About

Languages Computers can
Reason About

⤋
Languages People can Reason

About

P.S.

• Every adjunction gives rise to a monad.

• Every monad can be factored into an
adjunction.

• Adjunctions are everywhere, once you know
what you’re looking for.

Further Reading
• Cousot, P. “Constructive Design of a hierarchy of Semantics of a

Transition System by Abstract Interpretation,” 2002.

• Hyland and Power. “The Category Theoretic Understanding of
Universal Algebra: Lawvere Theories and Monads,” 2007.

• Lawvere, F.W. “Functorial Semantics of Algebraic Theories,”
1963.

• Lawvere, F.W. “Adjointness in Foundations,” 1969.

• Meijer, Fokkinga and Paterson. “Functional Programming with
Bananas, Lenses, Envelopes and Barbed Wire.”

• Smith, Peter. “The Galois Connection Between Syntax and
Semantics,” 2010.

