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• Digits are 0,1,2,3,4,5,6,7,8,9
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Numbers with only digits we call Naturals
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• 23.5

• 18.21

• 0.9

• 5.0

Here are some more numbers

Numbers with digits and a dot and more digits
we call Reals
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Reals → Naturals

• Take away the dot and subsequent digits. If 
those digits are nonzero, add one.

• Aka, “ceiling”

• Alternately, “forget”



Naturals → Reals



Naturals → Reals

• Stick on a .0



Naturals → Reals

• Stick on a .0

• Call this “lift” or “free”.
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Some Numbers are Bigger
than Other Numbers

• A Preorder has ≤
• x ≤ y and y ≤ z gives x ≤ z

• But “not x ≤ y” does not give “y ≤ x” 

• Since numbers have an order, they have a 
preorder



x., y. "∈ Reals
x, y  "∈ Naturals

lift x ≤ y. "" ⇔   x ≤ ceiling y.
lift x ≤ y. "" ⇔   x ≤ forget y.
≤ on Reals"⇔   ≤ on Naturals

4.0 ≤ 4.5 ⇔ 4 ≤ 5

Here’s Something Fun



x., y. "∈ Reals
x, y  "∈ Naturals

lift x ≤ y. "" ⇔   x ≤ ceiling y.
lift x ≤ y. "" ⇔   x ≤ forget y.
≤ on Reals"⇔   ≤ on Naturals

4.0 ≤ 4.5 ⇔ 4 ≤ 5
This Relation on Preordered Sets is a

Galois Connection

Here’s Something Fun



This Galois Connection
Respects Semirings

• lift (+) :: (Nat, Nat) -> Nat ===
     (+) :: (Real, Real) -> Real

• lift (*) :: (Nat, Nat) -> Nat ===
     (*) :: (Real, Real) -> Real

• forget (+) :: (Real, Real) -> Real ===
       (+) :: (Nat, Nat) -> Nat

• forget (*) :: (Real, Real) -> Real ===
       (*) :: (Nat, Nat) -> Nat



• 1.0 + 4.0 ≤ 5.5 ⇔ 1 + 4 ≤ 6

• 1.0 + 4.0 ≤ 2.9 + 2.9 ⇔ 1 + 4 ≤ 3 + 3

• 5.0 ≤ 1.9 * 2.9 ⇔ 5 ≤ 2 * 3



•forget(x) = ln (x)

•lift(x)   = exp(x)

•forget(*) = (+)

•lift(+)   = (*)

Now Log and Exp
which respect Semigroups 

exp x ≤ y. " " ⇔   x ≤ ln y.
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98 * 34 < 123456 ?
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98 * 34 < 123456 ?

• How many people know the answer to this?



Pop Quiz

98 * 34 < 123456 ?

• How many people know the answer to this?

• How many people performed the 
multiplication to learn the answer?



Knowing beyond Calculating

• We can answer some questions without 
computing an entire result.

• The formalization of this knowing beyond 
calculating is an adjunction.



• lift x ≤ y. ⇔ x ≤ forget y.

• Real → Log(R)  → Ceil(Log(R))

• 98   → Log(98) → Ceil(Log(98)) = 2

• 34   → Log(34) → Ceil(Log(34)) = 2

• 2 + 2 ≤ 4

• 100 * 100 ≤ 10000

• 10000 < 123456
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• lift x ≤ y. ⇔ x ≤ forget y.

• Real → Log(R)  → Ceil(Log(R))

• 98   → Log(98) → Ceil(Log(98)) = 2

• 34   → Log(34) → Ceil(Log(34)) = 2

• 2 + 2 ≤ 4

• 100 * 100 ≤ 10000

• 10000 < 123456

• Elementary School Shortcuts are Adjunctions

• Arithmetic Equations are a great
Domain Specific Language for Numbers.



Categories

• Have objects

• Have arrows (morphisms)

• Have conditions (identity and composition)



Functors

• Take object to objects

• Take arrows to arrows

• Preserve identity, Preserve composition



Adjoint Functors

• F ⊣ G
• F : D → C
• G : C → D

• F → F ∘ (G ∘ F) → (F ∘ G) ∘ F → F

• G → (G ∘ F) ∘ G → G ∘ (F ∘ G) → G



Or this:



Galois Connections

• Partially Ordered Sets as a Category

• morphism between x and y ⇔ x ≤ y

• Lift ⊣ Ceiling

• Exp ⊣ Log



Intuitions from Galois 
Connections

• Functors have a “forgetful” and “free” side

• The “free” side is the Left one.

• The forgetful size tends to smush things.

• It smushes all in one direction.

• The free side does the “one obvious” thing.

• Every right adjoint has only one left (upto iso)

• Vice versa

• Adjunctions compose to form new Adjunctions.



Part II:
Adjunctions and

Programming Languages



Every Language has a Theory

• Language = Things you can Say

• Theory = What you can say about those 
things.



Some languages have bad 
theories





• Things are similar, therefore equational 
reasoning is possible.
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• Things are similar, therefore equational 
reasoning is possible.
• Things are different, therefore equational 

reasoning is necessary.
• Designing a language is balancing between the 

two — allowing things that are sufficiently 
different, but no more!
• We want languages open to multiple, nontrivial 

models.
• This is a job for adjunctions



The Adjunction between 
Syntax and Semantics



The Adjunction between 
Syntax and Semantics

Syntax ⊣ Semantics



Model : Sentence → a
Theory : Set Sentence

Syntax is also called “structure”



Model : Sentence → a
Theory : Set Sentence

Syntax       : Models   → Theory
Semantics : Theory → Models

Syntax is also called “structure”



data Expr = Sum Expr Expr
          | Product Expr Expr
          | Val Double

Here’s a Theory



data Expr = Sum Expr Expr
          | Product Expr Expr
          | Val Double

Here’s a Theory

data ExprF a = SumF a a
             | ProductF a a
             | ValF Double
instance Functor ExprF where ...
newtype Fix f = Fix (f (Fix f))



newtype Mu f =
    Mu {runMu :: forall a. (f a -> a) -> a }

fixToMu :: Functor f => Fix f -> Mu f
fixToMu (Fix expr) =
    Mu $ \ f -> f . fmap (($f) . runMu . fixToMu) $ expr



type Sentence f = Fix f

type Model f a = f a -> a

runInterp :: Functor f => Model f a -> Sentence f -> a
runInterp i = \e -> runMu (fixToMu e) i

interpExp :: Model ExprF Double
interpExp (SumF x y) = x + y
interpExp (ProductF x y) = x * y
interpExp (ValF d) = d

-- runInterp interpExp simpleExpr = 3

newtype Mu f =
    Mu {runMu :: forall a. (f a -> a) -> a }

fixToMu :: Functor f => Fix f -> Mu f
fixToMu (Fix expr) =
    Mu $ \ f -> f . fmap (($f) . runMu . fixToMu) $ expr



type Model f a = f a -> a
type CoModel f a = a -> f a
adjModel :: (f a -> a) -> (a -> f a)

Models have Adjoints!

adjModel finds the minimal “f a” that yields a.



runInterp    :: Model f a -> Sentence f -> a
findSentence :: Model f a -> a -> Sentence f

Models yield Adjoints!

runInterp finds the unique A given by the sentence.

findSentence = find the minimal sentence that yields an A.

findSentence m = Fix . adjModel m

findSentence . runInterp ==== Normalization by Evaluation



type Test a = a -> Bool

-- we can take: Model f a ! Model f Bool

semantics ::
   Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
   Test a -> Set (Model f a) -> Set (Sentence f)

Models have Validity
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type Test a = a -> Bool

-- we can take: Model f a ! Model f Bool

semantics ::
   Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
   Test a -> Set (Model f a) -> Set (Sentence f)

Models have Validity

• More models    = fewer theories

• More theories  = fewer models

• Galois Connection



Another Example

• Language is polynomial expressions in 3 
variables
• Semantic Domain is Reals
• Models are triples representing substitutions
• Validity judgement is equality to zero
• More formulae to satisfy = Fewer assignments 

work
• More assignments = Fewer formulae are 

satisfied by them



Adjoint Properties

• findModels . findTheories . findModels = 
findModels
• findTheories . findModels. findTheories = 

findTheories
• findTheories . findModels = closure of the 

models. If you have the first set you might as 
well have all the rest.
• findModels . findTheories = closure of the 

theory. If you can say these sentences, you 
might as well say the rest.



type Natural f g = forall a. f a -> g a

data Expr2F a = Sum2F a a
              | Product2F a a
              | Val2F Integer

trans :: Natural ExprF Expr2F
trans (SumF x y) = Sum2F x y
trans (ProductF x y) = Product2F x y
trans (ValF d) = Val2F . ceiling . log $ d

Morphisms between Theories
are Natural Transformations



transToModel ::
    Natural f g -> Model f (Sentence g)
transToModel eta = Fix . eta

morphSentence :: Functor f =>
    Natural f g -> Sentence f -> Sentence g
morphSentence eta = runInterp 
                        (transToModel eta)



transToModel ::
    Natural f g -> Model f (Sentence g)
transToModel eta = Fix . eta

morphSentence :: Functor f =>
    Natural f g -> Sentence f -> Sentence g
morphSentence eta = runInterp 
                        (transToModel eta)

Every theory is someone else's semantic domain.

Chains of transformation give rise to chains of adjunctions 
give rise to towers of semantics.



(aside) What about Effects?

• Effects break referential transparency

• Names (let/lambda), Mutation, Exceptions

• Capture Effects in your Semantic Domain

• Monad m => Model f (m a)



What is the correct Semantic 
Domain for Programs?

The problem is in capturing recursive definitions.

The answer to this question leads us to 
Denotational Semantics

(and a whole other talk).



Part II:
Applications



So?

• Don’t start with Theories (syntax)

• Start with Semantic Domains (combinators)

• Write theories that match your domains

• Layer theories on theories, with each model 
disallowing more sentences, and providing 
more rules

• Include an AST -- leave yourself open to 
multiple interpretations



adf-dfa

• Applicative Combinators
• Haskell DFA Combinators 
• Monadic Transition Collections 
• Transition Collections
• LLVM AST 
• LLVM Bytecode
• Assembly



adf-dfa

• String
• NFA
• Transition Collections
• LLVM AST 
• LLVM Bytecode
• Assembly



adf-dfa

• Applicative Combinators
• Haskell DFA Combinators 
• Monadic Transition Collections 
• Transition Collections
• Direct Interpretation



Abstract Interpretation

• Model T D

• T -> D

• Model T’ D’ is an abstraction of Model T D 
when

• C : D’ → D ⊣ A : D  → D’

• C : T  → T’  ⊣ A : T   → T’

• T’ → T → D  ≤  T’ → D’ → D



Things we may want to do

• Find extremum

• Find datasources/effects

• Check/infer types

• Guarantee “safety”

• Partial evaluation



Languages Computers can 
Reason About



Languages Computers can 
Reason About

⤋
Languages People can Reason 

About



P.S.

• Every adjunction gives rise to a monad.

• Every monad can be factored into an 
adjunction.

• Adjunctions are everywhere, once you know 
what you’re looking for.
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