Domain Specific Languages
and Towers of Abstraction

;‘;

Gershom Bazerman

Part 1:
Numbers

Numbers

Numbers

e Numbers have Digits

Numbers

e Numbers have Digits

* Digits are 0,1,2,3,4,5,0,7,8,9

Here are Some Numbers

Here are Some Numbers

Here are Some Numbers

Here are Some Numbers

Here are Some Numbers

°*3
* 34

.25

Numbers with only digits we call Naturals

Here are some more numbers

Here are some more numbers

® 235

Here are some more numbers

® 235

e 18.21

Here are some more numbers

® 23.5
® 18.21

® 0.9

Here are some more numbers

® 23.5
® 138.21

® 0.9

Here are some more numbers

® 23.5
® 138.21
® 0.9

® 5.0

Numbers with digits and a dot and more digits
we call Reals

Reals — Naturals

Reals — Naturals

e Take away the dot and subsequent digits. If
those digits are nonzero, add one.

Reals — Naturals

e Take away the dot and subsequent digits. If
those digits are nonzero, add one.

e Aka, “ceiling”

Reals — Naturals

e Take away the dot and subsequent digits. If
those digits are nonzero, add one.

o Aka, “ceiling’

o Alternately, “forget”

Naturals — Reals

Naturals — Reals

e Stickona .o

Naturals — Reals

e Stickona .o

e Call this “lift” or “free”.

Some Numbers are Bigger

than Other Numbers

Some Numbers are Bigger

than Other Numbers

®* A Preorder has <

Some Numbers are Bigger

than Other Numbers

®* A Preorder has <

* x < yandyS zgiveSXS Z

Some Numbers are Bigger

than Other Numbers

®* A Preorder has <
* x < yandyS zgiveSXS z

® But “not x < y” does not give “y < x”

Some Numbers are Bigger

than Other Numbers

®* A Preorder has <
*x < yandyS z gives X S 7

® But “not x < y” does not give “y < x”

e Since numbers have an order, they have a
preorder

Here’s Something Fun

xX., V. € Reals
%,y €& Naturals

liftx<y < xc<ceilingy.

liftx<y < xc<forgety.
< on Reals = < on Naturals

4.0< 4.5 4<%

Here’s Something Fun

xX., V. € Reals
%,y €& Naturals

liftx<y < xc<ceilingy.
liftx<y < xc<forgety.
< on Reals = < on Naturals

4.0< 4.5 4<%

This Relation on Preordered Sets is a
Galois Connection

This Galois Connection
Respects Semirings

:: (Nat, Nat) -> Nat ===
) ¢ (Real, Real) -> Real

) :: (Nat, Nat) -> Nat ===
:: (Real, Real) -> Real

:: (Real, Real) -> Real
) ¢ (Nat, Nat) -> Nat

:: (Real, Real) -> Real ===
:: (Nat, Nat) -> Nat

*10+40<55<—=<1+4<6

°*10+40<29+29<—=1+4<3+3

50=<19 29~ 5<2*3

Now Log and Exp

which respect Semigroups

e forget(x) = 1ln (X)
o lift (x) = exp(x)
e forget(*) = (+)

olift(+) = (*)

expx<y. < x<lny

Pop Quiz

08 * 34 < 123456 7

Pop Quiz

08 * 34 < 123456 7

e How many people know the answer to this?

Pop Quiz

08 * 34 < 123456 7

e How many people know the answer to this?

e How many people performed the
multiplication to learn the answer?

Knowing beyond Calculating

e We can answer some questions without
computing an entire result.

e The formalization of this knowing beyond
calculating is an adjunction.

lift x = y. & = forget vy.

Real — Log(R) — Ceil(Log(R))
98 —> Log(98) — Ceil(Log(98))
34 —> Log(34) — Ceil(Log(34))
2 + 2 = 4

100 * 100 = 10000

10000 < 123456

lift x = y. & = forget vy.

Real — Log(R) — Ceil(Log(R))
98 —> Log(98) — Ceil(Log(98))
34 —> Log(34) — Ceil(Log(34))
2 + 2 = 4

100 * 100 = 10000

10000 < 123456

e Elementary School Shortcuts are Adjunctions

lift x = y. & = forget vy.

Real — Log(R) — Ceil(Log(R))
98 —> Log(98) — Ceill(Log(98))
34 —> Log(34) — Ceil(Log(34))
2 + 2 = 4

100 * 100 = 10000

10000 < 123456

e Elementary School Shortcuts are Adjunctions

e Arithmetic Equations are a great
Domain Specific Language for Numbers.

Categories

e Have objects
e Have arrows (morphisms)

e Have conditions (identity and composition)

Functors

e Take object to objects
o Take arrows to arrows

* Preserve identity; Preserve composition

Adjoint Functors

o F 141G
o F:D—C
e G:C—D

*F—-F-(G-F)—=F-G)-F—=F
*G—-G-FH-G—-G-F-G)—=G

Py x
Home (FY,X)

Homp(Y. GX)

G
Hom(Fg,f) Hom(g,Gf)

!
Home (FY'. X") - Homp(Y'.GX")
Y X

(3alois Connections

e Partially Ordered Sets as a Category

®* morphism between x andy <> x <y

o Lift 4 Ceiling

e Ixp - Log

Intuitions from (Galois
Connections

e Functors have a “forgetful” and “free” side
e The “free” side is the Left one.

e The forgetful size tends to smush things.
e It smushes all in one direction.

e The free side does the “one obvious” thing.

e Every right adjoint has only one left (upto iso)

e Vice versa

e Adjunctions compose to form new Adjunctions.

Part 11:

Adjunctions and
Programming l.anguages

Every Language has a Theory

e Language = Things you can Say

e Theory = What you can say about those
things.

Some languages have bad

theories

<7xml version="1.0" encoding="UTF-8"7>
<modification>
<id>After ABC, add 123 only if XYZ not in file</id>
<version>1.0</version>
<vgmver>Z.X</vgmver>
<author>xxx</author>
<file name="path/to/myfile.php">
<operation info="After ABC, add 123 if XYZ not in file">
<ignoreif><![CDATA[
XYZ
1]></ignoreif>
<search position="after"><![CDATA[
Svar = "ABC';
11></search>
<add><! [CDATA[
$var = '123';
11></add>
</operation>
</file>
</modification>

e Things are similar, therefore equational
reasoning is possible.

e Things are similar, therefore equational
reasoning is possible.

e Things are different, therefore equational
reasoning 1S Necessary.

e Things are similar, therefore equational
reasoning is possible.

e Things are different, therefore equational
reasoning 1S NECessary.

e Designing a language is balancing between the

two — allowing things that are sufficiently
different, but no more!

e Things are similar, therefore equational
reasoning is possible.

e Things are different, therefore equational
reasoning 1S NECessary.

e Designing a language is balancing between the
two — allowing things that are sufficiently
different, but no more!

e We want languages open to multiple, nontrivial
models.

e Things are similar, therefore equational
reasoning is possible.

e Things are different, therefore equational
reasoning 1S Necessary.

e Designing a language is balancing between the
two — allowing things that are sufhiciently
different, but no more!

e We want languages open to multiple, nontrivial
models.

e This is a job for adjunctions

The Adjunction between
Syntax and Semantics

The Adjunction between
Syntax and Semantics

dSyntax — Semantics

Model : Sentence — a
Theory : Set Sentence

Syntax is also called “structure”

Model : Sentence — a
Theory : Set Sentence

Syntax : Models — Theory
Semantics : Theory — Models

Syntax is also called “structure”

data EXpr

= Sum ExXpr EXpr
| Product Expr Expr
| Val Double

data EXpr

= Sum ExXpr EXpr
| Product Expr Expr

Val Double

ProductF a a
| ValF Double
instance Functor ExprF where ...
newtype Fix f = Fix (f (Fix f))

data ExprF a = SumF a a

newtype Mu f
Mu {runMu forall a. (f a -=> a) -> a }

fixToMu :: Functor f => Fix f -> Mu £
fixToMu (Fix expr) =
Mu $ \ £ -=> £ . fmap (($f) . runMu . fixToMu) $ expr

newtype Mu f =
Mu {runMu :: forall a. (f a -> a) -> a }

fixToMu :: Functor f£f => Fix £ -> Mu £

fixToMu (Fix expr) =
Mu $ \ £ -=> £ . fmap (($f) . runMu . fixToMu) $ expr

type Sentence f = Fix f
type Model £f a = £ a -> a

runInterp :: Functor f => Model f a -> Sentence f -> a

runInterp i = \e -> runMu (fixToMu e) i

interpExp :: Model ExprF Double
interpExp (SumF X y) = X + y
interpExp (ProductF x y) = x * y
interpExp (ValF d) = d

—— runInterp interpExp simpleExpr =

Models have Adjoints!

type Model f a = f a -> a
type CoModel £ a = a -> £ a
adjModel :: (f a -> a) -> (a -> £ a)

adjModel finds the minimal “f a” that yields a.

Models yield Adjoints!

runlInterp :: Model f a -> Sentence f -> a
findSentence :: Model f a -> a -> Sentence f

runlnterp finds the unique A given by the sentence.
findSentence = find the minimal sentence that yields an A.

findSentence m = Fix . adjModel m

findSentence . runInterp ==== Normalization by Evaluation

type Test a = a -> Bool

—— we can take: Model £ a » Model f Bool

semantics ::
Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
Test a -> Set (Model f a) -> Set (Sentence f)

type Test a = a -> Bool

—— we can take: Model £ a » Model f Bool

semantics ::
Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
Test a -> Set (Model f a) -> Set (Sentence f)

type Test a = a -> Bool

—— we can take: Model £ a » Model f Bool

semantics ::
Test a -> Set (Sentence f) -> Set (Model f a)

syntax ::
Test a -> Set (Model f a) -> Set (Sentence f)

4 W VV WA

Models have Validity

type Test a = a -> Bool

-— we can take: Model £ a » Model f£ Bool

semantics ::
Test a -> Set (Sentence f) -> Set (Model f a)

syntax
Test a -> Set (Model f a) -> Set (Sentence f)

e More models = fewer theories
e More theories = fewer models

e (Galois Connection

Another Example

e Language is polynomial expressions in 3
variables

e Semantic Domain is Reals
 Models are triples representing substitutions
e Validity judgement is equality to zero

 More formulae to satisty = Fewer assignments
work

e More assignments = Fewer formulae are
satisfied by them

Adjoint Properties

e indModels . indTheories . indModels =
findModels

e findTheories . findModels. findTheories =
findTheories

e findTheories . findModels = closure of the
models. If you have the first set you might as

well have all the rest.

e findModels . findTheories = closure of the

theory: If you can say these sentences, you
might as well say the rest.

Morphisms between Theories
are Natural Transformations

type Natural f g = forall a. £f a -> g a

data Expr2F a = Suml2F a a
Product2F a a
Val2F Integer

: ¢ Natural ExprF EXpr2F
(SumF X y) = SumlF x vy
(ProductF x y) = Product2F X y
(ValF d) = Val2F . ceiling . log $ d

transToModel ::
Natural f g -> Model f (Sentence qg)

transToModel eta Fix . eta

morphSentence :: Functor f =>
Natural f g -> Sentence f -> Sentence g

morphSentence eta = runlnterp
(transToModel eta)

transToModel ::
Natural £ g -> Model f (Sentence qg)

transToModel eta Fix . eta

morphSentence :: Functor f =>
Natural £ g -> Sentence f -> Sentence g

morphSentence eta = runlnterp
(transToModel eta)

Every theory is someone else's semantic domain.

Chains of transformation give rise to chains of adjunctions
give rise to towers of semantics.

(aside) What about Effects?

o Effects break referential transparency
e Names (let/lambda), Mutation, Exceptions

o Capture Effects in your Semantic Domain

e Monad m => Model f (m a)

What is the correct Semantic
Domain for Programs?

The problem is in capturing recursive definitions.

The answer to this question leads us to
Denotational Semantics

(and a whole other talk).

Part 11:
Applications

e Don’t start with Theories (syntax)

e Start with Semantic Domains (combinators)
e Write theories that match your domains

e Layer theories on theories, with each model
disallowing more sentences, and providing
more rules

e Include an AST - leave yourself open to
multiple interpretations

adf-dfa

e Applicative Combinators
o Haskell DFA Combinators
e Monadic Transition Collections

e Transition Collections

e LLVM AST

e LLLVM Bytecode
e Assembly

® String

e NFA

e Transition Collections
e LLVM AST

e LLLVM Bytecode

e Assembly

adf-dfa

e Applicative Combinators

e Haskell DFA Combinators

e Monadic Transition Collections
e Transition Collections

* Direct Interpretation

Abstract Interpretation

e Model T D
e [>D
e Model T’ D’ is an abstraction of Model T D

when
e C:DD—=D4HA:D —=D
o C:T —=T 4A:T =T

o "—=T—=D<T" =D —=D

Things we may want to do

e Find extremum

e Find datasources/effects
e Check/infer types

e Guarantee “safety”

e Partial evaluation

LLanguages Computers can
Reason About

LLanguages Computers can
Reason About

U

Languages People can Reason

About

PS.

e Every adjunction gives rise to a monad.

e Every monad can be factored into an
adjunction.

e Adjunctions are everywhere, once you know
what you'’re looking for.

Further Reading

Cousot, P. “Constructive Design of a hierarchy of Semantics of a
Transition System by Abstract Interpretation,” 2002.

Hyland and Power. “The Category Theoretic Understanding of
Universal Algebra: Lawvere Theories and Monads,” 2007.

Lawvere, F.W. “Functorial Semantics of Algebraic Theories,”
1963.

Lawvere, F.W. “Adjointness in Foundations,” 1969.

Meijer, Fokkinga and Paterson. “Functional Programming with
Bananas, Lenses, Envelopes and Barbed Wire.”

Smith, Peter. “The Galois Connection Between Syntax and
Semantics,” 2010.

