
Submission for IFL 2014

Flipping Fold, Reformulating Reduction
An Exercise in Categorical Design

Gershom Bazerman
S&P/CapitalIQ

gershomb at gmail

1. Introduction
We begin this paper by considering the Haskell Foldable typeclass,
a stalwart of the standard libraries. Unlike many other typeclasses,
most famously Monad , Foldable itself has been equipped with
no required laws. This is rather surprising, as folds themselves are
some of the most well understood and studied aspects of functional
programming, and the universal properties of folds, in general, are
what we often use to prove laws. We will explore why it is hard to
give laws to Foldable on its own. From there we will define a natu-
rally arising class, adjoint to Foldable , which we name Buildable .
In turn, we will explore how these two classes in conjunction, each
individually lawless, nonetheless are mutually constrained by an el-
egant set of laws arising from categorical principles. We will then
explore Buildable as an independently useful class that allows us
to compose systems of streaming and parallel computation, and ex-
plore its relationship to a prior, similar formulation. The aim of this
paper is then threefold; to provide laws to Foldable , to provide a
new, useful class of Buildable types, and along the way, to illus-
trate a way in which categorical thinking can give rise to practical
results.

2. Recalling Foldable
The Data.Foldable library, written by Ross Paterson, and part of
the standard libraries that ship with the Glasgow Haskell Compiler,
provides a Foldable typeclass. While it has many methods, all
methods can be derived (modulo efficiency) by the user defining
only one of foldr or foldMap. For the purposes of this paper we
consider the cleaner interface given below.

class Foldable t where
foldr :: (a → b → b)→ b → t a → b
foldMap :: Monoid m ⇒ (a → m)→ t a → m

In fact, there is a further function, not in the class, but in-
cluded in the file, which also provides a complete implementation
of Foldable . We can consider its definition as follows.

toList :: Foldable t ⇒ t a → [a]
toList t = foldr (:) [] t

[Copyright notice will appear here once ’preprint’ option is removed.]

Without much work, one can see how foldr , foldMap, and
toList are all interdefinable and hence equal in expressive power
on finite structures. On infinite structures, foldr captures a typical
“cons-list” that can extend infinitely far to the right, while a foldl
can capture a “snoc-list,” and foldMap is more powerful than both,
capturing even structures that can have a notion of a center of con-
traction while extending indefinitely both right and left. However,
for the purposes of this paper we will work directly with toList for
expository purposes, with the understanding that it is future work
to generalize these results.

When one considers folds in general, one typically expects
them to universally characterize the meaning of a particular data
structure in terms of all operations possible on it – in fact that is
the very definition of a proper fold. However, we can observe that
the foldr given here in fact characterizes all operations possible
on a data structure when considered as a list. The laws of folds
themselves follow naturally from our usual constructions, and are
given directly. However, what it means to consider a data structure
to a list is left completely undefined. For example, we could equip
all type constructors of arity one with the Foldable instance who
acts as the empty list. This would violate user expectations, but not
any particular given typeclass law. One motivation for our work is
to provide a set of laws to begin to match our expectations of what
Foldable “should” do.

3. Enter Buildable
Because Foldable has effectively only one operation, we cannot
give it laws on its own. Rather, we must define how this operation
interacts with other operations, and to do so we must introduce at
least one other class. This is the pattern we have seen elsewhere,
recently where work by Jaskelioff, and later Bird and Gibbons
has provided Traversable functors with laws as given by their
interrelationship with Applicative actions.[4, 20] Much earlier, of
course, we had to define the relationship of Eq and Ord instances
such that they agreed. Other examples also abound.

What class shall we use to interact with Foldable? A clue
is provided in the genuine definition of toList , which in turn is
defined in terms of build , imported from GHC .Exts .

toList :: Foldable t ⇒ t a → [a]
toList t = build (λc n → foldr c n t)

build :: (forall b ◦ (a → b → b)→ b → b)→ [a]
build g = g (:) []

Why this indirection? As the documentation tells us, “GHC’s
simplifier will transform an expression of the form foldr k z
(build g), which may arise after inlining, to g k z , which avoids
producing an intermediate list.”.[1] This is an instance of “shortcut
fusion” as introduced by Gill, Launchbury, and Peyton Jones.[12]
Recent work by Hinze[16] has explored the relationship between
shortcut fusion and the categorical notion of an adjoint, which we

Submission for IFL 2014 1 2014/12/15

will come back to. In the special case of foldr and build on lists,
we observe that they correspond to providing a full isomorphism
between lists and the partial application of the fold function to lists,
which is to say between lists seen “initially” and lists seen “finally”
as characterized by their universal property.

Just as as the Foldable typeclass wraps up fold , we now intro-
duce a Buildable typeclass to wrap up build . As all Foldables can
provide a toList , we also provide a fromList to help examine the
behaviour of Buildables.

class Buildable f a where
build :: ((a → f a → f a)→ f a → f a)→ f a
build g = g insert unit

singleton :: a → f a
singleton x = build (λc n → c x n)

unit :: f a
unit = build (λcons nil → nil)

insert :: a → f a → f a
insert x xs = build (λcons nil → x ‘cons‘ xs)

fromList :: Buildable f a ⇒ [a]→ f a
fromList xs = List .foldr insert unit xs

A minimal complete definition is given by build , or by insert
coupled with unit . The build function can be seen as providing the
concrete constructors to a partially applied fold, and the insert and
unit functions as just introducing the two constructors (the binary
and unary operations) explicitly. In fact, build is simply the Church
encoding of the pair (insert , unit).

We can recognize such a pair as an F-algebra [31] of a list, or
an f -valued catamorphism [25]. More intuitively, while a Foldable
is “something that contains as to be folded over”, a Buildable a is
simply “something that can be produced by folding over as”. Or,
still another way, a Foldable is something that can be viewed as a
list and a Buildable is a view on a list.

There is one important design decision here worth justifying –
the choice to use a multi-parameter typeclass, This can be justified
by examining a standard type that clearly should be buildable,
but nonetheless is not isomorphic to list – Set . We can write a
Buildable instance for Set like so:

instance Ord a ⇒ Buildable Set a where
unit = Set .empty
insert = Set .insert

Here the purpose of the extra type variable becomes clear –
while the Ord constraint is not necessary to “tear down” a set, it
certainly is necessary to build one up, and thus must be included in
our typeclass. While this costs us in terms of verbosity, at least it
introduces no loss in expressiveness.

What property should we expect from the interaction of our
two functions fromList and toList? Consider the behaviour of
the interaction of fromList and toList on Set . Whatever laws we
introduce must surely not rule out such a basic instance. Clearly
we expect thereBack = toList ◦ Set .fromList to reorder our
elements. Furthermore, we expect it to merge duplicate elements.
However, we also know that if we iterate thereBack repeatedly,
it is idempotent. In this case, toList is a retraction of fromList ,
and the composition fromList ◦ toList is a split idempotent. More
generally, we can consider the functorial nature of Foldable and
Buildable to produce a set of laws, proceeding from the notion of
an adjoint.

4. Folds, Builds, and Adjunctions
The connection of adjointness to folds, unfolds and fusion laws has
been explored in the recent work of Ralf Hinze[15]. In general,
fusion laws are about moving to an “adjoint space” where compo-
sition is directly given, and then shifting back to the original space

to present the result. Although the movement between regular and
church-encoded lists given in fold/build fusion is an isomorphism,
in general there is no such restriction. Streams including Yield are
a bigger space than lists, etc.[8] The purpose behind such adjunc-
tions is, loosely speaking, to allow us to capture “only what mat-
ters” about a computation. When “moving across” the two functors
which make up an adjoint, we are able to transport where the work
of functions occurs.

We recall the formal definition of an adjunction. Such a beast
consists of a pair of functors, mapping from one category to a
second and back. In the “hom-set adjunction” formulation, for two
categories C and D and two functors F : D → C and G : C → D,
we have the formula:

C(FX, Y) ∼= D(X,GY)

While such a definition appears very symmetric, this is deceptive.
Informally, we can regard the functor F going rightwards as “for-
getful” and the functor G going leftwards as “free”. The above iso-
morphism only applies to morphisms in C from objects induced
by the functor F , and morphisms in D to objects induced by the
functor G.

In our specific context, and taking our Buildable functor f to
be right (forgetfully) adjoint to [], this is the condition that for
all functions f : f a → f b, there is a function g : [a] → [b]
such that f ◦ fromList :: [a] → f b is isomorphic to fromList ◦
g :: [a] → f b. That is to say, all functions on our functor
can be translated to functions on lists, and vice versa, such that
even if they do not actually coincide, when we “move across” the
types appropriately, they will. When our instances of foldable and
buildable are lawful, we can in fact write functions to witness this
directly, if not efficiently.

mapToList :: (Buildable f a,Foldable f)⇒
(f a → f b)→ [a]→ [b]

mapToList f = toList ◦ f ◦ fromList
mapFromList :: (Foldable f ,Buildable f b)⇒

([a]→ [b])→ f a → f b
mapFromList g = fromList ◦ g ◦ toList

In this formulation, the law is that mapFromList ◦mapToList
must be equivalent to identity. Expanding this out we see the con-
dition is that for all functions f from f a → f b, it is the case
that:

f ≡ fromList ◦ toList ◦ f ◦ fromList ◦ toList

Many adjoints follow the lead of Set and include some notion
of a retract, in which case fromList ◦ toList is itself an identity.
In such a case, we call these creatures an “idempotent adjunction”
and can make a stronger claim: Functions on lists may be seen as
functions on functors right adjoint to list “factored through” lists,
and dually that functions on functors right adjoint to list may be
viewed as actions on lists “factored” through the adjoint, and that
such notions coincide. In the specific case of Set , this means that
there is no function on sets that cannot be written as a function on
the list underlying a set, and furthermore that there is no function
yielding a list that underlies a set (i.e. function f of type [a]→ [b]
such that ∀x.∃y. f x ≡ toList y) that cannot be transformed
directly into a function on sets.

5. Lawful and Unlawful Builds and Folds
It is a lovely property of adjoints that given any functor F , both
left and right adjoints, if they exist, are necessarily unique up to
isomorphism. Hence, given any Foldable instance, we can check
if a Buildable instance exists, and furthermore determine what
such an instance must do, up to isomorphism. Similarly, any given
Buildable instance uniquely determines a Foldable , if one exists.

Submission for IFL 2014 2 2014/12/15

Nonetheless, it is also true that there are many valid Foldable
instances, corresponding to different strategies for “collecting the
contents”, and in fact each gives rise to a different adjoint.

Furthermore, to this point we have only considered “forgetful”
adjoints to list (i.e. where they contain no more information than
a list). In fact, we also want to consider left adjoints to list, which
contain some information not able to be captured by a list. Here is
a simple type with such a property:

data AnnotateL m a = AnnotateL m [a]

instance Foldable (AnnotateL m) where
foldr f a (AnnotateL xs) = List .foldr f a xs

instance Monoid m ⇒ Buildable (AnnotateL m) a
where

unit = AnnotateL mempty []
insert x (AnnotateL m xs) = AnnotateL m (x : xs)

As we can see, this type is “bigger” than a plain list. And so it is
no longer the case that fromList ◦ toList is equivalent to identity.
When so transliterated, any function of type AnnotateL m a →
AnnotateL m b will preserve the action on the list component, but
discard the action on the annotation. Thus we have an adjoint in the
other direction. In general, such adjoints will arise when we have
some notion of product in our functor. This is a specific instance
of the general rule that right adjoint functors commute with limits,
and left adjoint functors commute with colimits.[23] A common
such case arises with trees, where a list equipped with branching
structure is obviously bigger than a list with such structure flattened
out.

So shall we require that Buildable be either a left or a right
adjoint? At first glance, this situation seems problematic. The last
thing we want is a typeclass where we can choose which set of
laws to follow. However, things are not as bad as they appear.
A functor is only both a left and a right adjoint if it is itself an
equivalence. So we do not need to “choose” which laws to follow –
they are chosen for us, and whenever both choices are applicable
it is only because both choices coincide. Furthermore, even if
we zig-and-zag over left and right adjoints freely, we still retain
strong reasoning principles, as long as we restrict ourselves to
idempotent adjunctions as described above – i.e. where they factor
as embedding/projection pairs in either direction. This is because
every idempotent adjunction induces equivalence between the full
images of our categories C and D under our given functors.

Thus if we require either the left or right idempotent adjoint con-
dition, we still find they coincide in the following straightforward
set of laws.

toList ◦ fromList ◦ toList ≡ toList
fromList ◦ toList ◦ fromList ≡ fromList

This is to say, going either direction may lose information, but
no information may be lost repeatedly. Such a condition captures
the neat intuition that Foldables and Buildables represent a general
notion of computations that “factor through” lists, and furthermore
that while we may “summarize” information at every step, we
do not “repeatedly summarize” such that we eventually have no
information left at all. For lack of better terminology call these laws
a condition of weak idempotence.

It is still the case that, in general, we do not have unique
Foldable and Buildable instances. For example, Set .toList is
equally well adjoint if it produces things in either ascending or
descending order. In fact, most Foldable instances can be paired
with an appropriate Buildable and vice versa. And when they can-
not be, this in itself is interesting, as we shall see. Nonetheless we
have a strong set of laws which we can use to structure reasoning
about our programs, where before we had none. In particular, most
Buildable structures come with an obvious notion of the “right”
way to reduce into them from lists, and this in itself is often enough

to determine what the natural way to bring them back to lists should
be.

To examine how this works out in practice, consider the product
of two Buildables , with the derived Buildable instance derived as
a product of the underlying instances.

data Product f g a = Product (f a) (g a)

instance (Buildable f a,Buildable g a)⇒
Buildable (Product f g) a where

unit =
Product unit unit

insert x (Product xs ys) =
Product (insert x xs) (insert x ys)

Assuming both functors are also Foldable , there are two poten-
tially lawful Foldable instances in this case.

instance (Foldable f ,Foldable g)⇒
Foldable (Product f g) where

foldr f z (Product xs) = foldr f z xs

instance (Foldable f ,Foldable g)⇒
Foldable (Product f g) where

foldr f z (Product ys) = foldr f z ys

As Product is a generalization of our AnnL above, we can
observe by the same argument that this is a left adjoint. However,
in the case that we take the product of two right adjoints, then our
derived structure will obey neither the left nor right adjoint laws.
However, if our underlying structures obey the weak idempotence
laws, then so to will either instance.

Dually, we observe that Coproducts face the opposite choice – a
single Foldable instance but two legitimate choices for Buildable .

data Coproduct f g a = InL (f a) | InR (g a)

instance (Foldable f ,Foldable g)⇒
Foldable (Coproduct f g) where

foldr f z (InL xs) = foldr f z xs
foldr f z (InR ys) = foldr f z ys

instance (Buildable f ,Buildable g)⇒
Buildable (Coproduct f g) where

unit = InL unit
insert x (InL xs) = InL (insert x xs)
insert x (InR ys) = InR (insert x ys)

instance (Buildable f ,Buildable g)⇒
Buildable (Coproduct f g) where

unit = InR unit
insert x (InL xs) = InL (insert x xs)
insert x (InR ys) = InR (insert x ys)

Now, when our underlying structures are both left adjoints, we
again fulfill neither set of adjoint laws but nonetheless preserve
weak idempotence.

Finally, in the presence of the Functor typeclass, we will add
one more law to our Buildable instances. Foldable , which places
no constraints on the a , has always induced toList as a natural
transformation whenever f is a Functor – i.e it is necessarily the
case that for all functions g :: a → b, map g ◦ toList ≡ toList ◦
fmap g . We now also require that when f is a Functor , then the
Buildable instance place no constraints on a as well. This now
yields the nice property that fromList is a natural transformation
as well – i.e. it is the case that for all g , fmap g ◦ fromList ≡
fromList ◦ map g , and as a consequence fmap g ◦ singleton ≡
singleton ◦ g .

6. Relating Builds to Monads and Traversals
Equipping Foldable , Buildable pairs with an adjoint relationship
allows us to generate a number of interesting derived properties.
For one, as is well known, every adjunction gives rise to a Monad.

Submission for IFL 2014 3 2014/12/15

[23] With our equipment, we do not necessarily have a full member
of the Monad typeclass in Haskell , in particular, because the
elements of a Buildable are potentially subject to some restriction.
Nonetheless, we possess enough power to build a Restricted Monad
as proposed by Hughes[19, 28].

The following code listing, following the Restricted Monad im-
plementation in the “rmonad” package [30], witnesses this relation-
ship by producing for any right adjoint Foldable , Buildable pair, a
corresponding monad.

newtype WrapBuild f a = WrapBuild {getBuild :: f a }
deriving (Foldable)

instance (Buildable f a)⇒ Buildable (WrapBuild f) a
where

unit = WrapBuild unit
insert x (WrapBuild f) = WrapBuild (insert x f)

class Suitable m a where
constraints :: Constraints m a

class RMonad m where
rreturn :: Suitable m a ⇒ a → m a
rbind :: (Suitable m a,Suitable m b)⇒

m a → (a → m b)→ m b
rmap :: (Suitable m a,Suitable m b)⇒

(a → b)→ m a → m b

data family Constraints (m :: ∗ → ∗) :: ∗ → ∗
data instance Constraints (WrapBuild f) a =

(Buildable f a)⇒ BC

instance (Buildable f a,Foldable f)⇒
Suitable (WrapBuild f) a where

constraints = BC

withResConstraints :: Suitable m a ⇒
(Constraints m a → m a)→ m a

withResConstraints f = f constraints

instance Foldable f ⇒ RMonad (WrapBuild f) where
rreturn x = withResConstraints

(λBC → singleton x)
rbind s f = withResConstraints

(λBC → foldr
(λa s′ → foldr insert s′ (f a)) unit s)

rmap f ma = withResConstraints
(λBC → foldr

(λx xs → insert (f x) xs) unit ma)

The generated instance for WrapBuild Set behaves just as
one would hope a Set monad would behave. This in fact demon-
strates that one adjoint the Set monad decomposes to is precisely
that between Set and List. The class of monads that WrapBuild
generates are in fact all “relative monads along the list functor”,
with the sense of relative monad being that described by Al-
tenkirch, Chapman, and Uustalu. [2]. (We also note, in passing,
that a left-adjoint Foldable , Buildable pair correspondingly yields
a restricted comonad).

In a similar fashion we can define a restricted Traversable
class, and equip any right adjoint Foldable , Buildable pair with
an RTraversable instance.

withResConstraints1 :: Suitable m a ⇒
(Constraints m a → f (m a))→ f (m a)

withResConstraints1 f = f constraints

class RTraversable t where
rtraverse :: (Suitable t a,Suitable t b,Applicative f)⇒
(a → f b)→ t a → f (t b)

instance Foldable f ⇒ RTraversable (WrapBuild f) where
rtraverse g x = withResConstraints1
(λBC →

(fmap (foldr insert unit) ◦ traverse g ◦ toList) x)

It is well known that Foldable is a superclass of Traversable .
This demonstrates that right adjoint Foldable , Buildable pairs are
a subclass, corresponding to those Traversable functors that can be
built “incrementally” from zero elements upwards. Following [5],
we can think of Traversable objects as uniquely decomposing into
shape and contents. Right-adjoint Buildable functors are precisely
those whose shape can be determined, piecemeal, by the stream of
their contents.

7. Reducers as Buildables
Hinze and Jeuring introduced a predecessor class to Foldable
named Reduce .[17] However, it is in fact Buildable that really
provides the “reduction” component directly – with Foldable de-
scribing the “shape” of a reduction but Buildable providing the
actual target semantics of any given fold. Foldable describes how
to fold, but it is Buildable that fixes a fold to a concrete meaning.
In fact, Buildable provides a very close analog, though more theo-
retically motivated, to the ‘Reducers‘ available in Edward Kmett’s
reducers package.

The following code listing demonstrates the “basic” functional-
ity that all notions of reduction should share – the ability to define
multiple aggregations such as sum and count, and the ability to zip
them into one pass. Here the aggregations we define happen to be
in fact monoidal. But in general, no such restriction applies.

newtype Count = Count Int deriving Show

instance Monoid Count where
mempty = Count 0
mappend (Count x) (Count y) = Count (x + y)

data Ann m a = Ann m

instance Buildable (Ann Count) a
where

unit = Ann (Count 0)
insert x (Ann (Count m)) =

Ann (Count (m + 1))

instance Foldable (Ann m) where
foldr f z = z

newtype Sum a = Sum {getSum :: a }
deriving (Eq,Ord ,Num)

instance Num a ⇒ Buildable Sum a where
unit = Sum 0
insert x (Sum xs) = Sum (x + xs)

instance Foldable Sum where
foldr f (Sum x) = f z x

sumCount :: [Double]→
Product Sum (Ann Count) Double

sumCount = fromList

The listing contains a few items of particular interest. First, we
introduce a Ann type to carry around explicit information about
what should be “fed in” to a Buildable , and more generally to
lift an aggregation into a functorial context. By construction our
builds only require one pass, and so the use of our Product as
defined previously allows the introduction of concurrent reductions
while operating in constant space. Finally, the resultant sumCount
function itself is trivial – all the work of describing the nature of
the computaiton has been pushed entirely to a declarative level in
the type, and the code itself is synthesized from the specification
by the compiler’s typeclass resolution.

For completeness we have included Foldable definitions for
Ann and Sum , though neither is of particular interest.

Submission for IFL 2014 4 2014/12/15

8. Varieties of Compositon
Having introduced Product as one notion of composition, corre-
sponding to parallel reduction, it seems appropriate to ask what
other forms of composition we can define. For one, there is the tra-
ditional composition of functors. If we provide our outer f with a
valid Functor instance, the following instance is possible.

newtype Compose f g a = Compose (f (g a))

instance (Functor f ,Buildable f (g a),Buildable g a)⇒
Buildable (Compose f g) a where

unit = Compose unit
insert x (Compose xs) =

Compose (fmap (insert x) xs)

Here, we perform an insert of each new element across all
elements g a in our outer functor. This corresponds to a notion
of simultaneous “fanning out” a computation across computational
resources. We might use this for example to evaluate a number of
predicates on a substring simultaneously. While Product provides
a notion of trivial concurrency, we can describe Compose as a
notion of trivial parallelism.

But it is not enough to fork a computation out if we are not able
to join it back. Furthermore, even without parallelism or concur-
rency, some forms of computation are innately sequential. Hence
we introduce a type to capture sequential computation. While the
structure is the same of our Product type, the Buildable instance
is quite different, taking advantage of the relationship to Foldable .

data Seq f g a = Seq (f a) (g a)

transform :: (Buildable g a,Foldable f)⇒ f a → g a
transform xs = build (λc n → foldr c n xs)

instance (Foldable f ,Buildable f a,Buildable g a)⇒
Buildable (Seq f g) a where

unit = Seq unit unit
insert x (Seq xs ys) =

let xs′ = insert x xs
in Seq xs′ (transform xs′)

This lets us build into f , and, eventually, rebuild that f into a g .
Because we are in a lazy language, we do not in fact compute the
transform (which is simply a fused fromList ◦ toList where the
Buildable and Foldable instances need not coincide) at every step,
but only when we force the value.

Our sequential and parallel composition operators lend them-
selves to a natural generalization that merges their behaviour in a
nontrivial way. We can either generalize parallel composition by
first preprocessing through some sort of “running counter”, or gen-
eralize sequential composition by “smearing” out the a transforma-
tion by appending our transform step rather than dropping it on
the floor. The result is the same – a very general notion of a scan
generated from a pair of list algebras.

data Scan f g a = Scan (g a) (f (g a)) deriving Show

instance (Buildable f (g a),Buildable g a)⇒
Buildable (Scan f g) a where

unit = Scan unit unit
insert x (Scan xs ys) = Scan xs′ (insert xs′ ys)

where xs′ = insert x xs

getScan (Scan x) = x

We can witness that this captures, for example, the correct
notion of a suffix sum.

suffixSum :: Num a ⇒ [a]→ [Sum a]
suffixSum = getScan ◦ fromList

We can express the more common prefixSum by working on a
reversed list, or performing a foldl instead of a foldr .

Sharp-eyed readers may notice that this Scan is in fact a type of
zygomorphism, yoking a pair of catamorphisms into a compound
calculation. [24]

9. Nonempty Builds and Folds
The preceding has operated with one significant simplification.
Foldable is required to take both a unit and an action. The unit is
necessary to provide a result if the structure is in some sense empty.
However, there are a variety of things that are almost list algebras,
but have no unital object. A trivial example would be a build into a
nonempty list. Other examples are functions such as maximum or
mean . We can universally build into such things if we begin with
a guaranteed nonempty structure. In his semigroupoids library,
Edward Kmett introduced such a class, named Foldable1 , which
is a full subclass of Foldable . Here we present a version with a
simplified signature for expository purposes. Rather than a pair of
a unit and an append function, foldr1 instead only takes an append.

class Foldable f ⇒ Foldable1 f where
foldr1 :: (a → a → a)→ f a → a

Similarly, we also have a class Buildable1 that consists of
things that do not provide a unital object, but only an insert func-
tion. Because we can consider Buildable as the arguments to
Foldable , by contravariance there are more instances of Buildable1
than Buildable , and hence it is a full superclass of the latter.

class Buildable1 f a where
build1 :: ((a → f a → f a)→ f a)→ f a
build1 g = g insert1

insert1 :: a → f a → f a
insert1 x xs = build1 (λcons → x ‘cons‘ xs)

fromList1 :: f a → [a]→ f a
fromList1 u xs = List .foldr insert1 u xs

We can now characterize the laws for Foldable1 as deriving
directly from Foldable , and the laws for Buildable1 by the same
adjoint relationship to Foldable as given in the laws for Buildable .
We also note in passing that while Foldable , Buildable pairs pro-
vided a subclass of all Traversals , the restriction to Buildable1 al-
lows us, albeit awkwardly, to capture the power of any Traversable
structure. On exploration of this is beyond the scope of this paper.

With this in hand, we can for example provide a Buildable1
instance for Max , even though no general Buildable instance
exists.

newtype Max a = Max {getMax :: a }
deriving (Eq,Ord ,Num,Show)

instance Ord a ⇒ Buildable1 Max a where
insert1 x (Max y) = Max (max x y)

In general, throughout this paper, when Buildable1 instances
exist on Buildable objects, we will not provide such definitions,
since they follow directly.

10. Extensions and Transformations
Following our compositional approach, we define new data con-
structors to handle these cases. In these data structures, it transpires
that often our unit is more constrained than our insert operation,
as the whole idea is that we can vary our inputs and outputs while
requiring a properly buidable “data carrier”. So we now compli-
cate things by introducing a Buildable1 class, a strict superclass of
Buildable that omits the unit operation. While Buildable gives an
algebra on all lists, Buildable1 gives algebras on non-empty lists.
In a library situation, one would want a superclass constraint on
Buildable1 .

If we recall our Count and Sum example from above, there’s an
obvious missing component. Typically we take a count and a sum

Submission for IFL 2014 5 2014/12/15

such that we can divide the sum over the count and take the average.
Our language of buildables describes how to create structures, but
neither how to transform them, nor how to preprocess their inputs.

To perform transformations on our outputs, we introduce a
ThenDo constructor:

data ThenDo f a b = ThenDo (f b → a)

instance Buildable1 f b ⇒ Buildable1 (ThenDo f a) b
where

insert1 x (ThenDo xs) = ThenDo (xs ◦ insert1 x)

instance Buildable1 f a ⇒ Buildable (ThenDo f (f a)) a
where

unit = ThenDo id
insert = insert1

mapTD :: (a → b)→ ThenDo f a c → ThenDo f b c
mapTD k (ThenDo f) = ThenDo (k ◦ f)

pureTD :: a → ThenDo f a b
pureTD = ThenDo ◦ const

apTD ::
ThenDo f (a → b) r →
ThenDo f a r →
ThenDo f b r

apTD (ThenDo f) (ThenDo x) =
ThenDo (λz → (f z) (x z))

contramapTD :: Functor f ⇒
(d → c)→
ThenDo f a c →
ThenDo f a d

contramapTD f (ThenDo g) = ThenDo (g ◦ fmap f)

As mapThenDo illustrates, ThenDo f is covariantly functo-
rial in its first argument. Furthermore, it is covariantly applicative
as well. Finally, as contraMapTD illustrates, if f is a Functor ,
then it is contravariantly functorial in its second argument. In
fact, though the arguments are reversed from the typical order,
ThenDo f is a Profunctor , and corresponds to DownStar in
Edward Kmett’s profunctors package.

Thus far, the power we have gained with Buildable has been
in tying the type we accept to the type we produce. Now, via
ThenDo, we can separate that aspect out again, allowing the types
accepted and produced to vary entirely independently, but while
still properly tracking the type accepted.

An interesting and informative limitation is that ThenDo can-
not itself be made Foldable . We have moved the parameters we
accept into an explicitly contravariant position, and it is impossible
to recover them directly. While we build into an f b, all we are
now able to produce is an a . This tells us that, sensibly, ThenDo
must serve as a “cap” on a chain of computations. Using this new
tool, we can turn the running sum/count computation earlier and
transform it into a genuine mean.

mean :: [Double]→
ThenDo (Product Sum (Ann Count))

Double Double
mean = fromList1 (mapTD go unit)

where go (Product (Sum x) (Ann (Count y))) =
x / fromIntegral y

The newtype noise, granted, makes this look uglier than one
would desire. However, we see the same separation as in our earlier
sumCount code – the core work of the computation, the running
calculation, is declaratively expressed and captured in the type
signature. Only the final step, which involves the introduction of
an arbitrary computation, is written explicitly. Because that work is
applied using a standard functoral approach, it is also open to easy
algebraic reasoning and refactoring. For example, we can observe,
although it does not necessarily make much difference here, than

fromList1 ◦mapTD go is in general, by parametricity, equivalent
to mapTD go ◦ fromList1 . When given a larger computation,
built up incrementally, such algebraic reasoning can be a great aid
in simplification and understanding.

Similarly, we may wish to equip our Buildable functors with a
general notion of “pre-actions” that allow us to choose whether and
how often values are inserted to begin with.

data FirstDo f a b = FirstDo (b → [a]) (f a)

instance Buildable f a ⇒ Buildable (FirstDo f a) a
where

unit = FirstDo (:[]) unit
insert x (FirstDo f xs) = FirstDo f (insert x xs)

concatMapFD :: (c → [b])→ FirstDo f a b →
FirstDo f a c

concatMapFD f (FirstDo g xs) =
FirstDo (concatMap g ◦ f) xs

This corresponds to some form of contravariant left Kan exten-
sion along the List functor. FirstDo is a contravariant functor, so
we can now contravariantly map arbitrary functions over our input.
Furthermore, it can act as a filter by choosing to return no elements
in the list when they fail to pass a given test. And finally it can act
to produce a large intermediate set of results that are again reduced.
In fact it corresponds to precomposition with a Kleisli arrow, just as
the insert1 function corresponds to a single step of the concatMap
function. In expressive power, FirstDo very closely resembles the
“Transducers” introduced by Rich Hickey in Clojure, following on
from work by Might and Shivers. [14, 29]

Assembling our entire toolkit, we are able to characterize both
pre- and post-processing steps, while tracking the full computa-
tional structure of our reductions in the types.

11. Maximum Segment Sum
By associating list algebras directly with a typeclass, we have
opened the way to reasoning about program transformation in the
classic style of the Bird-Merteens Formalism [25]. While we do
not claim to provide new insight on how to derive program trans-
formations, our algebra of Buildable functors certainly allows us
to express programs in this style concisely and declaratively, by
pushing the actual code into typeclasses from which the resultant
functions are then directly synthesized.

We demonstrate this power by tackling a classic exercise in pro-
gram transformation – the Maximum Segment Sum problem.[27].
The statement of this problem is: given a list of numbers, find the
maximum possible sum of any segment (contiguous run in the list).
Of course, when the list of numbers is all positive, the answer is
always the sum of the entire list. As an exercise in program trans-
formation, one typically starts from the naive cubic time algorithm
that corresponds directly to the specification, and then through a
series of “correct moves” derives a linear algorithm. In our case,
we will merely illustrate that the linear algorithm can be written
cleanly with Buildable functors, and that doing so yields a state-
ment of its “meaning” that is more obviously correct.

We begin by introducing a new Buildable functor that provides
a notion of “bounded” behaviour.

data Bound f a = Bound (f a → Bool) (f a) (f a)
getBound (Bound x) = x

instance Eq (f a)⇒ Eq (Bound f a) where
(≡) = (≡) ‘on‘ getBound

instance Ord (f a)⇒ Ord (Bound f a) where
compare = compare ‘on‘ getBound

instance Buildable f a ⇒ Buildable (Bound f) a where
unit = Bound (const False) unit unit
insert x (Bound p z xs)

Submission for IFL 2014 6 2014/12/15

| p xs′ = Bound p z z
| otherwise = Bound p z xs′

where xs′ = insert x xs

We now follow the key observation of the efficient Maximum
Segment Sum algorithm – our answer has a lower bound at zero, as
even if all values are negative, the empty segment still has a zero
sum.

Hence, we begin with building into a Bound Sum capped at
zero. This yields us, going from the back of the list, a “resetting”
running sum, that every time it dips below zero is “pulled back
up”. Thinking inductively, adding values to the initial portion of
that calculation (i.e. the tail of the list), could only give us a higher
answer, not a lower. Hence, we need not consider cases where the
initial segment is in any way truncated. Meanwhile, adding values
to the final portion of that calculation (the head of our list) could
create problems, if such values were negative. Hence, we must
consider the “best” prefix possible out of all suffixes to the list.
The suffixes are considered in turn by our Scan introduced above,
yielding the following type and implementation:

maximumSegmentSum :: (Num a,Ord a)⇒
[a]→ Scan Max (Bound (Sum)) a

maximumSegmentSum =
fromList1 (Scan (Bound (<0) 0 0) (Max unit))

This is to say, as the types tell us, maximum segment sum is
simply a scan into the maximum of a bounded sum.

The need to use Buildable1 make the above a bit uglier than
we would like, in conjunction with our explicit use of Bound .
We can also argue that we are projecting our a into a different
number system, subject to saturation at zero, and give an explicit
construction for this. This tidies up things quite a bit.

newtype Sat a = Sat a deriving (Show ,Eq,Ord)

sat x | x < 0 = Sat 0
| otherwise = Sat x

instance (Ord a,Num a)⇒ Num (Sat a) where
fromInteger = sat ◦ fromInteger
(Sat x) + (Sat y) = sat (x + y)
(Sat x)− (Sat y) = sat (x − y)
(Sat x) ∗ (Sat y) = sat (x ∗ y)

mss :: (Num a,Ord a)⇒ [a]→ Scan Max Sum (Sat a)
mss = fromList1 (Scan 0 0) ◦map Sat

In both cases, we have given a succinct representation of the
classic efficient Maximum Segment Sum problem, where the
“meaning” of the behaviour can be read right off the type. This
rendition of the Maximum Segment Sum problem was in fact one
of the motivating examples for the introduction of zygomorphisms
to begin with.[24]

We can compare this description of the algorithm with the
explicit encoding, for example as given by Shin-Cheng Mu.[27]

mssClassic = snd ◦ foldr step (0, 0) where
step x (p, s) =

(0 ‘max ‘ (x + p), 0 ‘max ‘ (x + p) ‘max ‘ s)

While this certainly is elegant, we would argue that it not nec-
essarily as descriptive. Furthermore, the Buildable rendition of the
algorithm lends itself to modular replacement of components, for
the purpose of obtaining derived algorithms or simply of “unpack-
ing” the behaviour of a given function. For example, suppose we do
not understand the meaning of our running saturated sum, and wish
to see the intermediate results. We can do this just by replacing our
‘Max‘ Buildable by a list.

preMss :: (Ord a,Num a)⇒ [a]→ Scan [] Sum (Sat a)
preMss = fromList ◦map Sat

If we want an even more basic insight into the data that the
saturated sum is derived from, and how it relates to successive tails
of our list, we need only swap out our other functor as well in order
to obtain the “free” structure of a Scan:

prePreMss :: [a]→ Scan [] [] a
prePreMss = fromList

This in turn corresponds to the tails function, and from our laws
we can “read off” that the Maximum Segment Sum algorithm itself
is related to the tails function by an adjunction.

12. Calculating Parallel Computations
We have imposed no constraints on our Buildable functors barring
the adjoint relationship with Foldable functors. This is at vari-
ance with presentations of similar constructions. Edward Kmett’s
reducers library requires that Reducers be instances of Semigroup
– i.e. equipped with an associative binary operator. Similarly for re-
ducers in Clojure, which are monoidal by nature, etc. In general,
this line of work, all focused on associative operations, flows from
Guy Steele’s 2009 ICFP invited talk “Organizing Functional Code
for Parallel Execution”, which motivated monoidal structures and
operations as providing a general skeleton for parallel decomposi-
tion of computations.

In particular, while we can consider a Buildable as the pair
of a unit object and an insert operation, we have provided no
way of relating two Buildable objects of the same type. However,
we can produce a derived operation that specializes to something
appropriate – transpend , which merges any pair of Buildable and
Foldables . When we force the two functors to be the same, this
operation becomes a “merge”.

transpend :: (Buildable g a,Foldable f)⇒
f a → g a → g a

transpend xs ys = build (λc n → foldr c ys xs)

merge :: (Buildable f a,Foldable f)⇒
f a → f a → f a

merge = transpend

One form of deriving parallel computations relies on a prin-
cipled rearrangement and reassociation of operations from an ex-
isting serial implementation. In such a situation, it is helpful not
only to have a Monoid , but also one that interacts with underlying
lists in a particular specified way. In particular, if we have a retract
such that fromList ◦ toList ≡ id , then we can consider writing
insert a xs as fromList (a : toList xs), which is equivalent to
merge ◦ singleton . In the case where merge ◦ singleton is indeed
equivalent to insert , then we have the property that fromList is
a list homomorphism – i.e. fromList xs ‘merge‘ fromList ys ≡
fromList (xs++ys). This is the same condition as requiring merge
to be associative – i.e. yielding a Monoid on f a .

The existing Monoid instance for set is already such a list ho-
momorphism. The obvious instances for things such as Ann Count
and Sum likewise. It is also the case that our compositions of
Buildables can be equipped with Monoid instances derived from
such instances on their underlying Buildables. For example:

instance Monoid (f (g a))⇒
Monoid (Compose f g a) where

mappend (Compose x) (Compose y) =
Compose (x ‘mappend ‘ y)

mempty = Compose mempty

instance (Monoid (f a),Monoid (g a))⇒
Monoid (Product f g a) where

mappend (Product x y) (Product x ′ y ′) =
Product (x ‘mappend ‘ x ′) (y ‘mappend ‘ y ′)

mempty = Product mempty mempty

Submission for IFL 2014 7 2014/12/15

The instance for Seq follows the same pattern. In all cases, the
underlying list homomorphisms let us push through the proofs that
the derived Monoid instances abide properly with our Buildable
and Foldable instances. In the case of compose and product, such
proofs are trivial. In the case of Scan , the merge is more subtle and
the equational reasoning is worth spelling out.

instance (Monoid (f (g a)),Monoid (g a),Functor f)⇒
Monoid (Scan f g a) where

mappend (Scan xs ys) (Scan xs′ ys′) =
Scan (xs <> xs′) (fmap (<>xs′) ys <> ys′)

mempty = Scan mempty mempty

As argued above, to prove that a Buildable such as Scan
can operate as a list homomorphism, it suffices to establish that
mappend ◦singleton is equivalent to insert . For brevity, we write
mappend infix as <>, and singleton as inj . We also make use
of the property that fmap f (inj x) ≡ inj ◦ f – i.e. inj is a
natural transformation from the identity functor. This guarantee is
provided by our laws.

mappend (singleton x) (Scan xs ys) =
mappend (Scan (inj x) (inj (inj x))) (Scan xs ys) =
Scan (inj x <> xs) (fmap (<>xs) (inj (inj x)<> ys)) =
Scan (insert x xs) (inj (inj (x <> xs))<> ys) =
Scan (insert x xs) (insert (inj (x <> xs)) ys) =
Scan (insert x xs) (insert (insert x xs) ys) =
insert x (Scan xs ys)

The existence of a Monoid instance for Scan means that we
can now build up our sequential scans from any parenthisization of
our list, and furthermore we can execute this in parallel. To witness
this we can write a function that chops a given list into a tree, and
then merges it.

fromListMerge :: (Buildable f a,Monoid (f a))⇒
[a]→ f a

fromListMerge = go ◦map singleton
where

go [] = unit
go [x] = x
go xs = go (mp xs)

mp (a : b : xs) = a ‘mappend ‘ b : mp xs
mp xs = xs

Now the suffix sum can be written as follows:

suffixSumMerge :: Num a ⇒ [a]→ [Sum a]
suffixSumMerge = getScan ◦ fromListMerge

If we annotate fromListMerge with parallelism operators, this
yields a new derivation of the famous Parallel Prefix Sum algo-
rithm, which given sufficient processors operates onO(logn) time.
We can write a naive fromListPar like so:

chunksOf n = unfoldr go where
go [] = Nothing
go x = Just (splitAt n x)

fromListPar ::
(Buildable f a,Monoid (f a),NFData (f a))⇒
[a]→ f a

fromListPar = go ◦map fromList ◦ chunksOf 1000
where go [] = unit

go [x] = x
go xs = go (mp xs)

mp (a : b : xs) = let ab = (a ‘mappend ‘ b)
mpxs = mp xs
in ab ‘deepseq‘ (mpxs ‘par ‘ ab : mpxs)

mp xs = xs

suffixScanPar :: (Num a,NFData a)⇒
[a]→ Scan [] Sum a

suffixScanPar = fromListPar

Tuning code for efficient parallelism is an entirely different art
than the pure parallel decomposition of algorithms. However, with
lists of size 107, the above implementation was sufficient to provide
a small parallel speedup on the author’s machine (from 18s with
one processor to 14s with three).

As discussed, the Monoid for Scan is derived from monoidal
properties of the underlying Buildables. Returning to the Maxi-
mum Segment Sum structure from the previous section, we can
observe that the Sat representation makes very explicit why that
structure is not a Monoid and thus does not naively parallelize. In
particular, saturated arithmetic is famously nonassociative – i.e. in
a saturated setting, (1 + −5) + 5 = 5 while 1 + (−5 + 5) = 1.
Hence Sat cannot be given a Monoid instance, an nor can struc-
tures such as Scan derived from it. This formulation also makes
very clear that an associativity condition is equivalent to a require-
ment that computations forget directional structure. Hence, it also
makes clear that the core of the Maximum Segment Sum algorithm
is structured around essential use of precisely such structure.

13. Windowed Algorithms; Monoids Need Not Be
List Homomorphisms

We have argued that many folds are best thought of naturally not
as monoids–Maximum Segment Sum, for example, has an innately
directional structure, although a more complex monoidal structure
may be derived for it. Similarly while every monoid yields a list
homomorphism, there are many useful instances of monoids are
not list homomorphisms. This becomes evident when we turn our
attention to windowed computation.

A test case here is the problem of a windowed sum (from which
we can easily derive the commonly useful windowed mean). That
is: given a list [1..10] return a list such as [1 + 2 + 3 + 4, 2 +
3 + 4 + 5, 3 + 4 + 5 + 6...]. Algorithms exist for computing
such results in O(n) time given any associative operation. Using
the power of our monoidal buildable scan, we are able not only to
do so, but also to, with sufficient processors, calculate the result in
O(m∗ log (n/m)) time, where m is our window size. To do so, we
introduce a structure that is effectively the pullback of two symmet-
ric windowed scans. This involves first creating a ScanL to mirror
our existing Scan , and then introducing a ScanSeg structure, that
is a triple of a left scan (adjoint to inits), a pure carrier, and a right
scan (adjoint to tails). The intuition is we have two “fringes” that
consist of a portion of a completed windowed calculation, with all
information available this far, and in between the completed section
of calculations. When we compose such structures monoidally we
line up the fringes and merge them using the underlying associa-
tive (monoidal) operation. One notion of such structures is shown
below.

data Rev f a = Rev [a] (f a) deriving Show
fromRev (Rev xs) = xs

instance (Buildable f a)⇒ Buildable (Rev f) a where
unit = Rev [] unit
insert x (Rev xs) =

Rev (x : xs) (fromList (reverse (x : xs)))

instance Monoid (f a)⇒ Monoid (Rev f a) where
mempty = Rev [] mempty
mappend (Rev xs r) (Rev ys r ′) =

Rev (xs ++ ys) (r <> r ′)

instance Foldable f ⇒ Foldable (Rev f) where
foldr c z (Rev xs) = foldr c z xs

type ScanL f g a = Rev (Scan (Rev f) (Rev g)) a
getScanL =

fmap fromRev ◦ fromRev ◦ getScan ◦ fromRev

data ScanSeg g a =

Submission for IFL 2014 8 2014/12/15

ScanSeg
(ScanL [] g a)
[g a]
(Scan [] g a)

deriving Show

instance (Buildable g a)⇒ Buildable (ScanSeg g) a
where

insert x (ScanSeg h m t) =
ScanSeg (insert x h) m (insert x t)

unit = ScanSeg unit unit unit

instance (Buildable g a,Monoid (g a))⇒
Monoid (ScanSeg g a) where

mempty = unit
mappend x@(ScanSeg h m t) y@(ScanSeg h′ m ′ t ′)

| isEmpty x = y
| isEmpty y = x
| otherwise =

ScanSeg h (m <>merged <>m ′) t ′

where
merged = zipMon
(getScan t)
(getScanL h ′)

zipMon (x : xs) (y : ys) =
x <> y : zipMon xs ys

zipMon [] ys = ys
zipMon xs [] = xs
isEmpty (ScanSeg (Rev []) [] (Scan [])) =

True
isEmpty = False

ScanSeg can be verified as a monoid by the following argu-
ment. Definitionally, left and right appends to the unit object are
identity. Outside of this case, the left fringe and left middle are al-
ways preserved by a right append, and the right fringe and right
middle are always preserved by a left append. The “merged mid-
dle” is determined solely by the left fringe of the right object and
the right fringe of the left object. Thus, we can verify that there
is no “action at a distance” between a and c in the expression
a <> b <> c. This in turn is enough to guarantee associativity.

Because our goal is to demonstrate the gist of an algorithm and
not provide an implementation efficient in all respects, we have
introduced some simplifications in the above code. First, we work
with a mildly inefficient Rev type to capture a left scan in terms
our already given Scan , rather than introduce a new type that fuses
this away, or coupling our Buildable class with a BuildableR that
provides an insertRight or “snoc” function.

Second, the ScanSeg we give is specialized to work over lists
as our “structure carrier” algebra, rather than any Buildable f . We
do so to avoid the need for a fully generalized notion of “zipping”.
It is worth noting in passing that when a is a Monoid , structures
such as [a] carry at least two monoidal structures – one derived
from the Monoid on list given by append, and one derived from
the structure induced by zipping; i.e., horizontal and vertical com-
position. However, an exploration of these two structures and their
generalizations is outside of the scope of this paper.

Furthermore, the specialization to lists gives us a complexity
cost in the price of monoidal append. An efficient implementation
of the ScanSeg structure would be better served by a carrier with
O(1)mappend .

With those caveats, we can nonetheless write a sliding win-
dowed sum as follows:

slidingSum :: Num a ⇒ Int → [a]→ ScanSeg Sum a
slidingSum n xs =

mconcat (map fromList (chunksOf (n − 1) xs))

With an efficient implementation we can observe that the overall
cost of merging any two ScanSegs is O(m) in our window size,

and furthermore that building a ScanSeg directly costsO(m). The
number of builds and merges we need to perform is O(n/m)
in the size of our list, and hence the entire operation is O(n)
with no varying cost due to window size. Additionally, unlike
many implementations of sliding sums, ours requires no “subtract”,
“negate”, or other inverse operation, and so generalizes across
all monoids. Finally, we can observe that the monoidal “divide-
and-conquer” strategy in play is also amenable to parallelization
precisely as with Parallel Prefix Sum. In ideal conditions, this
provides the O(m ∗ log (m/n)) bounds as promised.

Not only is ScanSeg not a list homomorphism, the entire point
is that it is not. In particular, different partitions of our input list give
results of different window sizes. Hence we see that for associative
computations operating only on the sequential ordering of a list,
list homomorphisms are a key tool, but for computations requiring
equipping lists with some stronger sort of overall global structure,
they are not.

14. Related Work
As discussed, the closest analogue to the work presented here is
Edward Kmett’s monoidal reducers package. The concrete differ-
ence is that rather than generalize over things of kind ∗ → ∗,
Monoidal Reducers are equipped with two type parameters, each
of kind ∗ – the things that reducers “accept”, and the things that
reducers “reduce to.” Furthermore, these reducers, as one would
infer from the name, are required to operate as a monoid does, i.e.
associatively. (Less importantly for our purposes, Monoidal Reduc-
ers, as one would not infer from the name, are in fact generalized
as to work over semigroups [i.e. they do not require an “empty”
value equivalent to unit as presented here]). In the absence of any
other constraints, requiring associative structure is about the mini-
mal law one can require such a structure to hold. However, as we
have seen, in the presence of an interaction with Foldable , we can
get a looser but still sufficient notion of a lawful structure even
without requiring associativity – and in fact, there are very good
reasons we should not!

Rich Hickey also arrived at similar formulations to Kmett’s,
though in an untyped context, in the reducers library for Clojure.
The inspiration for both lines of work is owed to Guy Steele’s 2009
ICFP invited talk “Organizing Functional Code for Parallel Exe-
cution.” Steele’s talk in fact also provided a similar construction
of Parallel Prefix Sum. In that case, he explored using “monoid-
cached trees” – structures that are built with an associated summary
Monoid . This is in contrast to our approach here that builds struc-
tures over Monoids (or more generally, arbitrary Buildables).

As discussed, the connection of Buildable functors to list al-
gebras relates very strongly to the algebra of programming in the
tradition of the Bird-Merteens Formalism [3, 24, 25]. The Parallel
Prefix Sum algorithm has been studied in this line of work as well
[10] There is even more work in this tradition studying Maxiumum
Segment Sum, with some notable examples being [6, 11, 24, 26].
The problem of windowed monoidal computation appears to be sur-
prisingly less studied, although it is tackled in passing by [9]. In
personal communication, Edward Kmett and Daniel Peebles have
observed that this can be solved with the use of a monoid-indexed
dequeue, such as provided by a Finger Tree[18]. However, we are
not aware of prior work solving this problem in parallel as pre-
sented here.

15. Conclusion and Future Work
In the course of this paper, initially motivated by seeking to pro-
vide structure to Foldable objects, we have introduced a new type-
class, Buildable , and associated laws. By directly representing list
algebras, Buildable turns out to be quite good to think with. Com-

Submission for IFL 2014 9 2014/12/15

position of Buildable functors has allowed us to capture notions
of parallel, concurrent, and streaming computation. Furthermore,
it has allowed us to represent algorithms in the program calcula-
tion tradition in a very direct form. Additionally, we have explored
the power of loosening prior restrictions and assumptions – looking
at Buildables that need not be Monoids and Monoids that need
not be list homomorphisms in a unified framework. The typeclass
representation of list algebras has been especially helpful here, al-
lowing constraints to filter downwards, while instantiation of the
typeclasses themselves synthesizes code bottom up.

A number of future lines of development are possible. The
beginning of this paper observed that foldMap is more general
than foldr or foldl as it allows summary of structures potentially
extending infinitely in both directions. It would be interesting to
explore how to alter Buildable to mirror that power, and to explore
what structures and laws arise in such a case. Along similar lines,
the relationship of Buildable1 and Foldable1 as well as their
associated laws could stand further exploration. An outcome of this
work would be a library that takes the main results of this paper into
a general purpose toolkit.

One further avenue of exploration would be to move towards a
Profunctor characterization of Buildable types – making use of
binary type constructors separating out what they accept into the
first type argument and what they “fold into” into the second po-
sition. We believe the machinery explored in the “Extensions and
Transformations” section would work out much more elegantly in
such a case. Another common functional model of streaming com-
putation comes via the tradition of work on Iteratees and later
Pipes and Machines [13, 21, 22]. We would like to explore how
to slot these into the Buildable formulation and see if it provides a
useful generalization – in such a situation, the Profunctor formu-
lation again seems like a good candidate.

With regards to the algorithms explored, it seems like there
should be a way to combine windowed decomposition techniques
with the machinery introduced for Parallel Prefix Sum to obtain a
derivation of a parallel version of Maximum Segment Sum and sim-
ilar problems. This relates to the “near homomorphism” approach
to such a problem introduced in [7]. We would also like to see if our
approach could be extended to tackle problems such as Maximum
Segment Density, as explored in [9].

A number of computations provided have followed the struc-
ture of a hylomorphism, first conceptually “unfolding” a list into
a more deeply nested structure, and then performing nested reduc-
tion. It would be worthwhile to generalize that pattern within our
framework, perhaps seeking to capture a general class of structures
with a coalgebra f a → f (f a) derived in interaction with the list
functor. This would in turn generalize notions of “mapReduce” to a
more general “unfoldReduce” that captures the skeleton of a wider
variety of computations.

Relatedly, the current work has focused on structures adjoint to
list. It would be worth exploring structures adjoint to other functors,
such as binary trees. Just as our current formulation allowed us to
obtain a certain class of relative monads and restricted traversals,
we suspect that other, related typeclass pairs could be used to
explore a broader range of structures.

Acknowledgments
Thanks to Jost Berthold who encouraged me to pursue work on this
project, and to Duncan Coutts, Edward Kmett, and Sjoerd Visscher
for illuminating and encouraging discussions. Special thanks also
to Jeff Polakow for providing invaluable editorial input, and to
the attendees of IFL 2014 for their useful feedback and probing
questions.

Note. All code in this paper compiles and runs in GHC 7.8.3
with standard imports, and with the requirement of hiding foldr

from the Prelude . A few obvious instances such as Buildable []
and some instances of Buildable1 have been omitted for brevity.
Extensions used at various points in this paper include RankNTypes ,
MultiParamTypeClasses , FlexibleInstances , FlexibleContexts ,
StandaloneDeriving , GADTs , NoMonomorphismRestriction ,
GeneralizedNewtypeDeriving , and TypeFamilies .

References
[1] Ghc.exts haddock documentation. http://hackage.haskell.org/package/

base-4.7.0.1/docs/GHC-Exts.html.
[2] T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be

endofunctors. In Foundations of Software Science and Computational
Structures, pages 297–311. Springer, 2010.

[3] R. Bird and O. De Moor. The algebra of programming. In NATO ASI
DPD, pages 167–203, 1996.

[4] R. Bird, J. Gibbons, S. Mehner, J. Voigtländer, and T. Schrijvers. Un-
derstanding idiomatic traversals backwards and forwards. In Proceed-
ings of the 2013 ACM SIGPLAN symposium on Haskell, pages 25–36.
ACM, 2013.

[5] R. Bird, J. Gibbons, S. Mehner, J. Voigtländer, and T. Schrijvers. Un-
derstanding idiomatic traversals backwards and forwards. In Proceed-
ings of the 2013 ACM SIGPLAN symposium on Haskell, pages 25–36.
ACM, 2013.

[6] R. S. Bird. Algebraic identities for program calculation. The Computer
Journal, 32(2):122–126, 1989.

[7] M. Cole. Parallel programming, list homomorphisms and the maxi-
mum segment sum problem. Technical report, Proceedings of Parco
93. Elsevier Series in Advances in Parallel Computing, 1993.

[8] D. Coutts. Stream Fusion: Practical shortcut fusion for coinductive
sequence types. PhD thesis, University of Oxford, 2010.

[9] S. Curtis and S.-C. Mu. Functional pearl: Finding a densest segment.
preprint, 2014.

[10] J. Gibbons. Upwards and downwards accumulations on trees. In Math-
ematics of Program Construction, pages 122–138. Springer, 1993.

[11] J. Gibbons. Maximum segment sum, monadically (distilled tutorial).
EPTCS, 66:181–194, 2011.

[12] A. Gill, J. Launchbury, and S. P. Jones. A short cut to deforestation. In
Proceedings of the conference on Functional programming languages
and computer architecture, pages 223–232. ACM Press, 1993.

[13] G. Gonzalez. pipes. http://hackage.haskell.org/package/pipes, 2012-
14.

[14] R. Hickey. Transducers. Strange Loop, 2014.
[15] R. Hinze. Adjoint folds and unfolds. In Mathematics of Program

Construction, pages 195–228. Springer, 2010.
[16] R. Hinze. Type fusion. In Algebraic Methodology And Software

Technology, pages 92–110. Springer, 2011.
[17] R. Hinze and J. Jeuring. Generic haskell: Practice and theory. In

Generic Programming, pages 1–56. Springer, 2003.
[18] R. Hinze and R. Paterson. Finger trees: a simple general-purpose

data structure. Journal of Functional Programming, 16(02):197–217,
2006.

[19] J. Hughes. Restricted data types in haskell. In Haskell Workshop,
volume 99, 1999.

[20] M. Jaskelioff and O. Rypacek. An investigation of the laws of traver-
sals. In MSFP’12, pages 40–49, 2012.

[21] O. Kiselyov. Iteratees. In Functional and Logic Programming, pages
166–181. Springer, 2012.

[22] E. Kmett, R. Bjarnason, and J. Cough. machines. http://hackage.
haskell.org/package/machines, 2012-14.

[23] S. Mac Lane. Categories for the Working Mathematician. Number 5
in Graduate Texts in Mathematics. Springer-Verlag, 1971. ISBN
0387900357.

[24] G. Malcolm. Algebraic data types and program transformation. Sci-
ence of Computer Programming, 14, 1990.

Submission for IFL 2014 10 2014/12/15

http://hackage.haskell.org/package/base-4.7.0.1/docs/GHC-Exts.html
http://hackage.haskell.org/package/base-4.7.0.1/docs/GHC-Exts.html
http://hackage.haskell.org/package/pipes
http://hackage.haskell.org/package/machines
http://hackage.haskell.org/package/machines

[25] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In Functional Pro-
gramming Languages and Computer Architecture, pages 124–144.
Springer-Verlag, 1991.

[26] S.-C. Mu. Maximum segment sum is back: deriving algorithms for
two segment problems with bounded lengths. In Proceedings of the
2008 ACM SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation, pages 31–39. ACM, 2008.

[27] S.-C. Mu. The maximum segment sum problem: Its origin, and
a derivation. http://www.iis.sinica.edu.tw/∼scm/2010/maximum-
segment-sum-origin-and-derivation/, 2010.

[28] N. Sculthorpe, J. Bracker, G. Giorgidze, and A. Gill. The constrained-
monad problem. In Proceedings of the 18th ACM SIGPLAN interna-
tional conference on Functional programming, pages 287–298. ACM,
2013.

[29] O. Shivers and M. Might. Continuations and transducer composition.
ACM SIGPLAN Notices, 41(6):295–307, 2006.

[30] G. Sittampalam and P. Gavin. rmonad. http://hackage.haskell.org/
package/rmonad, 2008-9.

[31] P. Wadler. Recursive types for free! unpublished manuscript, July
1990.

Submission for IFL 2014 11 2014/12/15

http://www.iis.sinica.edu.tw/~scm/2010/maximum-segment-sum-origin-and-derivation/
http://www.iis.sinica.edu.tw/~scm/2010/maximum-segment-sum-origin-and-derivation/
http://hackage.haskell.org/package/rmonad
http://hackage.haskell.org/package/rmonad

	Introduction
	Recalling Foldable
	Enter Buildable
	Folds, Builds, and Adjunctions
	Lawful and Unlawful Builds and Folds
	Relating Builds to Monads and Traversals
	Reducers as Buildables
	Varieties of Compositon
	Nonempty Builds and Folds
	Extensions and Transformations
	Maximum Segment Sum
	Calculating Parallel Computations
	Windowed Algorithms; Monoids Need Not Be List Homomorphisms
	Related Work
	Conclusion and Future Work

