
Practical Data Processing With Haskell

Ozgun Ataman

November 14, 2012

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 1 / 18

A bit about the speaker

Electrical Engineering, Biomedical Engineering, Business School

Later: “Management Consulting” with a strong flavor of analytics

Coding for 15 years, Haskell for 4 years

Used to use Ruby and Python for everything

First started with Haskell on data/analytics/simulation problems

Founded Soostone; using Haskell for almost everything

Core contributor to Snap Framework

Author of a number of libs on Hackage (and some yet to be released)

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 2 / 18

Motivation for this talk: Data processing is a great
practical place to start using (and learning) Haskell

We will assume very little familiarity with Haskell

Can’t teach the whole language; there are very good other resources

Will try to point at some simple but practically useful real-world
scenarios

Will expose some Haskell syntax along the way

Hopefully you’ll feel like giving Haskell a shot next time you run into
a similar challenge

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 3 / 18

Why Haskell? (Every talk must have one)

Type system doubles as a design language, crystallizes thoughts

Catch errors early, refactor aggressively (vs. Ruby/Python)

Purity is a huge win for long-lived, “can’t fail” code

Stay at a very high level, yet still get solid performance

Testing is even better, QuickCheck et al. are mesmerizing

Ridiculously simple multi-core concurrency

Promising future for parallel algorithms

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 4 / 18

“Comma Delimited Values” is a ubiquitous format that
necessitates some frequent, boring tasks for the analyst

Common Data Processing Tasks

Simple Tasks

Tidy up a messy data feed before stuffing into a SQL database
Transform a stream of tabular data (CSV) as a “pre-processing” step
Connect to a JSON/XML API and convert to clean CSV for
multi-purpose use later

“Sky Is The Limit”

Load strongly typed data for use in algos, simulations, etc.
Develop re-usable data processing and task automation tools

We will try to hit one example in each category.

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 5 / 18

“Comma Delimited Values” is a ubiquitous format that
necessitates some frequent, boring tasks for the analyst

Common Data Processing Tasks

Simple Tasks

Tidy up a messy data feed before stuffing into a SQL database
Transform a stream of tabular data (CSV) as a “pre-processing” step
Connect to a JSON/XML API and convert to clean CSV for
multi-purpose use later

“Sky Is The Limit”

Load strongly typed data for use in algos, simulations, etc.
Develop re-usable data processing and task automation tools

We will try to hit one example in each category.

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 5 / 18

Getting started with Haskell

Installing Haskell

1 Download Haskell Platform at http://www.haskell.org/platform/

2 cabal update

3 cabal install [insert package name here]

Learning Resources

1 http://learnyouahaskell.com/

2 http://book.realworldhaskell.org/

3 http://en.wikibooks.org/wiki/Haskell

4 #haskell on freenode

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 6 / 18

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://en.wikibooks.org/wiki/Haskell

Getting started with Haskell

Installing Haskell

1 Download Haskell Platform at http://www.haskell.org/platform/

2 cabal update

3 cabal install [insert package name here]

Learning Resources

1 http://learnyouahaskell.com/

2 http://book.realworldhaskell.org/

3 http://en.wikibooks.org/wiki/Haskell

4 #haskell on freenode

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 6 / 18

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://en.wikibooks.org/wiki/Haskell

A few summarizing words about Haskell

Haskell is purely functional - separates side effects from equational
logic

Haskell is non-strict - you don’t control order of evaluation

Haskell is staticly typed

Haskell is strongly typed - conversions are explicit

Haskell compiles to native code

GHC is pretty much the de-facto compiler for (public) real-world work

The RTS can map its lightweight threads onto several OS threads -
no global lock like Python or Ruby

Several language extensions are commonly used to increase
expressiveness

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 7 / 18

A real simple example: Let’s parse some CSV

module Main where

import q u a l i f i e d Data . By t eS t r i n g . Char8 as B
import Data . By t eS t r i n g . Char8 (By t eS t r i n g)

−− t ype synonyms a r e h e l p f u l f o r c l a r i t y
type F i e l d = By t eS t r i n g
type Row = [F i e l d]
type CSV = [Row]

−− p a r s i n g o f CSV i s a pure c o n v e r s i o n
−− from s t r i n g to our d e f i n e d CSV type
parseCSV : : By t eS t r i n g −> CSV
parseCSV s t r i n g = (map (B . s p l i t ’ , ’) . B . l i n e s) s t r i n g

−− a l l I /O occu r s s e p a r a t e l y , note the IO i n type
main : : IO ()
main = do

con t en t s <− B. r e a dF i l e ‘ ‘ Test . csv ’ ’
p r i n t (parseCSV con t en t s)

What about different delimeters, line endings, text quotation?

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 8 / 18

A real simple example: Let’s parse some CSV

module Main where

import q u a l i f i e d Data . By t eS t r i n g . Char8 as B
import Data . By t eS t r i n g . Char8 (By t eS t r i n g)

−− t ype synonyms a r e h e l p f u l f o r c l a r i t y
type F i e l d = By t eS t r i n g
type Row = [F i e l d]
type CSV = [Row]

−− p a r s i n g o f CSV i s a pure c o n v e r s i o n
−− from s t r i n g to our d e f i n e d CSV type
parseCSV : : By t eS t r i n g −> CSV
parseCSV s t r i n g = (map (B . s p l i t ’ , ’) . B . l i n e s) s t r i n g

−− a l l I /O occu r s s e p a r a t e l y , note the IO i n type
main : : IO ()
main = do

con t en t s <− B. r e a dF i l e ‘ ‘ Test . csv ’ ’
p r i n t (parseCSV con t en t s)

What about different delimeters, line endings, text quotation?

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 8 / 18

Don’t reinvent the wheel: Use a CSV library

There are several good ones around these days (wasn’t always so):

bytestring-csv: Simple, similar to what we have here

csv-conduit: Fast, flexible, stream processing CSV lib (by yours truly)

cassava: Fast, easy to use recent release by Johan Tibell

Example: Just read a file

import Data .CSV . Condu i t

−− You can use ‘ ‘ Text ’ ’ f o r p r ope r un i
code suppo r t
type MapRow Text = Map Text Text

readCSVFi l e
: : CSVSett ings −− Sp e c i f y d e l i m i t e r and t e x t quo t a t i o n
−> F i l ePath −− Po in t at a f i l e
−> IO [MapRow Text]

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 9 / 18

Don’t reinvent the wheel: Use a CSV library

There are several good ones around these days (wasn’t always so):

bytestring-csv: Simple, similar to what we have here

csv-conduit: Fast, flexible, stream processing CSV lib (by yours truly)

cassava: Fast, easy to use recent release by Johan Tibell

Example: Just read a file

import Data .CSV . Condu i t

−− You can use ‘ ‘ Text ’ ’ f o r p r ope r un i
code suppo r t
type MapRow Text = Map Text Text

readCSVFi l e
: : CSVSett ings −− Sp e c i f y d e l i m i t e r and t e x t quo t a t i o n
−> F i l ePath −− Po in t at a f i l e
−> IO [MapRow Text]

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 9 / 18

Flexibility is important in real-world usage; you’ll run out
of options fast if tied to the official RFC

We need something that can alter CSV format on both sides of I/O:

−− A l l CSV . Condu i t o p e r a t i o n s take t h e s e o p t i o n s
data CSVSett ings = CSVS {

csvSep : : Char
−− ˆ F i e l d d e l im e t e r

, csvQuoteChar : : Maybe Char
−− ˆ Text wrapper

, csvOutputQuoteChar : : Maybe Char
−− ˆ Output t e x t wrapper

, csvOutputColSep : : Char
−− ˆ Output d e l im e t e r

} d e r i v i n g (Read , Show , Eq)

−− We can s t a r t w i th d e f a u l t s and j u s t tweak the pa r t we need .
l e t mySet t i ngs = de fCSVSet t i ng s { csvSep = ’˜ ’ }

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 10 / 18

Let’s sustainably solve a common problem by creating a
command-line utility

Problem Statement

Data from many legacy sources often come with bizarre delimeters, no
proper text quotation and with extraneous white space.

� �
MAZDA6 ˜23500.00 ˜00123 ˜
SUBARU IMPREZA ˜33420.00 ˜00078 ˜� �

It’s hard to believe, but many “data analysts” spend hours(!!) cleaning up
datasets using all string-typed SQL tables and ad-hoc queries.

Mission

Create a command line tool that can do this “automatically” for us:

Be flexible in field separator and text quotation character

Be able to operate on really large files

Strip each field of any surrounding white-space

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 11 / 18

Let’s sustainably solve a common problem by creating a
command-line utility

Problem Statement

Data from many legacy sources often come with bizarre delimeters, no
proper text quotation and with extraneous white space.� �

MAZDA6 ˜23500.00 ˜00123 ˜
SUBARU IMPREZA ˜33420.00 ˜00078 ˜� �

It’s hard to believe, but many “data analysts” spend hours(!!) cleaning up
datasets using all string-typed SQL tables and ad-hoc queries.

Mission

Create a command line tool that can do this “automatically” for us:

Be flexible in field separator and text quotation character

Be able to operate on really large files

Strip each field of any surrounding white-space

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 11 / 18

Let’s sustainably solve a common problem by creating a
command-line utility

Problem Statement

Data from many legacy sources often come with bizarre delimeters, no
proper text quotation and with extraneous white space.� �

MAZDA6 ˜23500.00 ˜00123 ˜
SUBARU IMPREZA ˜33420.00 ˜00078 ˜� �

It’s hard to believe, but many “data analysts” spend hours(!!) cleaning up
datasets using all string-typed SQL tables and ad-hoc queries.

Mission

Create a command line tool that can do this “automatically” for us:

Be flexible in field separator and text quotation character

Be able to operate on really large files

Strip each field of any surrounding white-space

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 11 / 18

Let’s sustainably solve a common problem by creating a
command-line utility

Problem Statement

Data from many legacy sources often come with bizarre delimeters, no
proper text quotation and with extraneous white space.� �

MAZDA6 ˜23500.00 ˜00123 ˜
SUBARU IMPREZA ˜33420.00 ˜00078 ˜� �

It’s hard to believe, but many “data analysts” spend hours(!!) cleaning up
datasets using all string-typed SQL tables and ad-hoc queries.

Mission

Create a command line tool that can do this “automatically” for us:

Be flexible in field separator and text quotation character

Be able to operate on really large files

Strip each field of any surrounding white-space

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 11 / 18

In Haskell, we often start with the types

We need something like:

−− Take a f i l e , c l e a n i t up , output i n t o ano the r f i l e
p r o c F i l e : : CSVSett ings −> F i l ePath −> F i l ePath −> IO ()

−− We may choose to drop rows or emit mu l t i p l e rows pe r row du r i n g the
−− t r a n s f o rma t i o n
f ixRow : : Row −> [Row]

−− Do a l l the needed f i x e s on each column he r e
f i x F i e l d : : Text −> Text

A simple implementation:

f i x f i e l d = T. s t r i p −− drop wh i t e space

−− drop empty rows , f i x each column o t h e rw i s e
f ixRow [x] = case f i x F i e l d x of ”” −> []

x ’ −> [x ’]
f ixRow xs = [map f i x F i e l d xs]

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 12 / 18

In Haskell, we often start with the types

We need something like:

−− Take a f i l e , c l e a n i t up , output i n t o ano the r f i l e
p r o c F i l e : : CSVSett ings −> F i l ePath −> F i l ePath −> IO ()

−− We may choose to drop rows or emit mu l t i p l e rows pe r row du r i n g the
−− t r a n s f o rma t i o n
f ixRow : : Row −> [Row]

−− Do a l l the needed f i x e s on each column he r e
f i x F i e l d : : Text −> Text

A simple implementation:

f i x f i e l d = T. s t r i p −− drop wh i t e space

−− drop empty rows , f i x each column o t h e rw i s e
f ixRow [x] = case f i x F i e l d x of ”” −> []

x ’ −> [x ’]
f ixRow xs = [map f i x F i e l d xs]

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 12 / 18

What else can we do?

Often there will be specific columns that require special treatment. You
may need to parse a month name or split each “search term” out into its
own row.

Split each search term into its own row:

−− take each row , s p l i t the terms
−− and add as an a d d i t i o n a l column i n t o tha t row
procRow : : MapRow Text −> [MapRow Text]
procRow m = map i n s p i e c e s

where
i n s = M. i n s e r t ” term” v −− i n s e r t new term i n t o d i c t i o n a r y
terms = m ! ” terms ” −− l ookup a f i e l d from d i c t i o n a r y
p i e c e s = T. s p l i t ’ ’ te rms −− t o k e n i z e terms u s i n g wh i t e space

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 13 / 18

Let’s package it all up

module Main where
import System . Env i ronment
import Data .CSV . Condu i t

−− Map our f ixRow f u n c t i o n ove r the rows o f the g i v en CSV f i l e
p r o c F i l e s e t i n pu t output = mapCSVFile s e t f ixRow i npu t output

−− Read arguments from the command l i n e and c a l l p r o c F i l e
main = do

a r g s <− getArgs
case a r g s of

(f i : f o : sep : quote :) −> do
l e t s e t = de fCSVSet t i ng s { csvSep = head sep

, csvQuoteChar = Just (head quote) }
p r o c F i l e s e t f i f o
p r i n t ‘ ‘ P r o c e s s i n g complete ! ’ ’

−> e r r o r ‘ ‘ You must p r o v i d e e x a c t l y 4 arguments ! ’ ’

We now have a fast, reusable executable flexible enough to become the
first step in any data analysis exercise.

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 14 / 18

Going further: Automate new SQL table creation and
ongoing import of incoming data

Problem Statement

Creating new SQL tables for ad-hoc analysis of a 235-column dataset is a
HUGE pain, especially if you need to do it 3 times a day.

Mission

What if we could automatically deduce column data types, size them right
and generate SQL for the table creation?

We will not go into details, but want to highlight some parts that
demonstrate why Haskell shines

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 15 / 18

Going further: Automate new SQL table creation and
ongoing import of incoming data

Problem Statement

Creating new SQL tables for ad-hoc analysis of a 235-column dataset is a
HUGE pain, especially if you need to do it 3 times a day.

Mission

What if we could automatically deduce column data types, size them right
and generate SQL for the table creation?

We will not go into details, but want to highlight some parts that
demonstrate why Haskell shines

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 15 / 18

Algebraic Data Types are a big help in modeling the
problem domain

data F i e l d
= F In t ! I n t e ge r ! I n t e ge r
| FDouble !Double !Double
| FVarStr !MaxLen
| FText !MaxLen
| FDate
| FDateTime
| FBool
| FBlank
d e r i v i n g (Show ,Eq ,Ord , Read)

−− t r y p a r s i n g each type i n an o r d e r t ha t makes s en s e
i d e n t i f y F i e l d : : S t r i n g −> F i e l d

−− As we st ream ove r sample rows , we w i l l ma in ta i n best−gues s t yp e s
type IDMap = HM.Map S t r i n g F i e l d

−− New ev i d en c e may change our gue s s .
(<>) : : F i e l d −> F i e l d −> F i e l d
F In t mn1 mx1 <> F In t mn2 mx2 = F In t (min mn1 mn2) (max mx1 mx2)

<> FText l = FText l

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 16 / 18

Algebraic Data Types are a big help in modeling the
problem domain

data F i e l d
= F In t ! I n t e ge r ! I n t e ge r
| FDouble !Double !Double
| FVarStr !MaxLen
| FText !MaxLen
| FDate
| FDateTime
| FBool
| FBlank
d e r i v i n g (Show ,Eq ,Ord , Read)

−− t r y p a r s i n g each type i n an o r d e r t ha t makes s en s e
i d e n t i f y F i e l d : : S t r i n g −> F i e l d

−− As we st ream ove r sample rows , we w i l l ma in ta i n best−gues s t yp e s
type IDMap = HM.Map S t r i n g F i e l d

−− New ev i d en c e may change our gue s s .
(<>) : : F i e l d −> F i e l d −> F i e l d
F In t mn1 mx1 <> F In t mn2 mx2 = F In t (min mn1 mn2) (max mx1 mx2)

<> FText l = FText l

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 16 / 18

Result: A command-line utility we’re calling ’sqlimport’

’sqlimport’ is a full-fledged command line program:

It can define table schema (or import directly) for MySQL and Postgres:

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 17 / 18

Result: A command-line utility we’re calling ’sqlimport’

’sqlimport’ is a full-fledged command line program:

It can define table schema (or import directly) for MySQL and Postgres:

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 17 / 18

Thank you for listening!

Any Questions?

Ozgun Ataman (Soostone Inc) Practical Data Processing With Haskell November 14, 2012 18 / 18

