Diagrams: Declarative Vector Graphics in

Haskell

:ES;* o0

EEIAr
OO | # ¥ |2eas

3
-t
[
et
B " 2%
S |3 0 330 08 0e

(S =gl)
muos ke
e

Brent Yorgey

NY Haskell Users’ Group
November 25, 2013

Part |: Demo!

Part Il: Lessons for EDSL
design

Take home

Domain analysis is hard!

Take home

Domain analysis is hard!

Be in it for the long haul.

History

April 2008.

Wanted: declarative, programmatic drawing.

W METAPOST 4%&;&;
-

PGF/TikZ

“How hard could it be?”

After two weeks of feverish hacking, diagrams was born!

After two weeks of feverish hacking, diagrams was born!

It sucked.

Paths

What is a path?

type Path = [Point]

Problem 1

Problem 2

type Path = [(P2, CurveSpec)] ?

Affine spaces

Find the bug

type Point = (Double, Double)
type Vector = (Double, Double)

instance (Num a, Num b) = Num (a, b) where

parallelogram :: Point — Point — Point — Point
parallelogram py p> ps = p1 — p3 — p2

Affine spaces for programmers

Confusing points and vectors is a type error!

Affine spaces

translate (p; — p») = translate p; — translate p,

translate (p; — p») = translate p; — translate p,

Translations apply to points but not to vectors!

(" + ") :: Vector — Vector — Vector
(.4 ") :: Point — Vector — Point
(.—.) :: Point — Point — Vector

... Paths Again

type Path = [Vector]

S

type Path = [Segment|

type Path = ([Segment], Bool) ?

, True)?

Our solution

data Offset c v where
OffsetOpen :: Offset Open v
OffsetClosed :: v — Offset Closed v

data Segment c v = Linear (Offset c v)
| Cubic v v (Offset c v)

data Trail' | v where
Line ::[Segment Closed v] — Trail’ Line v
Loop :: [Segment Closed v] — Segment Open v
— Trail' Loop v
glueLine :: Trail' Line v — Trail’ Loop v
closeLine :: Trail' Line v.— Trail' Loop v

cutLine :: Trail' Loop v — Trail' Line v

Problem 3

Problem 3

type Trail = [Segment]...
type Path = [(Point, Trail)]

Our solution

data Located a = Loc {loc :: Point (V a),unloc :: a}
newtype Path v = Path [Located (Trail v)]

	Part I: Demo!
	Part II: Lessons for EDSL design
	History
	Paths
	Affine spaces
	…Paths Again

