
Diagrams: Declarative Vector Graphics in

Haskell

Brent Yorgey

NY Haskell Users’ Group
November 25, 2013

Part I: Demo!

Part II: Lessons for EDSL
design

Take home

Domain analysis is hard!

Be in it for the long haul.

Take home

Domain analysis is hard!

Be in it for the long haul.

History

April 2008.

Wanted: declarative, programmatic drawing.

PGF/TikZ

“How hard could it be?”

After two weeks of feverish hacking, diagrams was born!

It sucked.

After two weeks of feverish hacking, diagrams was born!

It sucked.

Paths

What is a path?

type Path = [Point]

Problem 1

?

Problem 2

type Path = [(P2 ,CurveSpec)] ?

Affine spaces

Find the bug

type Point = (Double,Double)
type Vector = (Double,Double)

instance (Num a,Num b)⇒ Num (a, b) where
. . .

parallelogram :: Point → Point → Point → Point
parallelogram p1 p2 p3 = p1 − p3 − p2

Affine spaces for programmers

Confusing points and vectors is a type error!

Affine spaces

translate (p1 − p2) ≡ translate p1 − translate p2

Translations apply to points but not to vectors!

translate (p1 − p2) ≡ translate p1 − translate p2

Translations apply to points but not to vectors!

(ˆ + ˆ) :: Vector → Vector → Vector
(.+ ˆ) :: Point → Vector → Point
(.− .) :: Point → Point → Vector

. . . Paths Again

type Path = [Vector]

type Path = [Segment]

type Path = ([Segment],Bool) ?

type Path = ([Segment],Bool) ?

(,True)?

(,True)?

Our solution

data Offset c v where
OffsetOpen :: Offset Open v
OffsetClosed :: v → Offset Closed v

data Segment c v = Linear (Offset c v)
| Cubic v v (Offset c v)

data Trail ′ l v where
Line :: [Segment Closed v]→ Trail ′ Line v
Loop :: [Segment Closed v]→ Segment Open v

→ Trail ′ Loop v

glueLine :: Trail ′ Line v → Trail ′ Loop v
closeLine :: Trail ′ Line v → Trail ′ Loop v

cutLine :: Trail ′ Loop v → Trail ′ Line v

Problem 3

type Trail = [Segment] . . .
type Path = [(Point,Trail)]

Problem 3

type Trail = [Segment] . . .
type Path = [(Point,Trail)]

Our solution

data Located a = Loc { loc :: Point (V a), unLoc :: a}
newtype Path v = Path [Located (Trail v)]

	Part I: Demo!
	Part II: Lessons for EDSL design
	History
	Paths
	Affine spaces
	…Paths Again

